AIML and sequence-to-sequence models to build artificial intelligence chatbots: insights from a comparative analysis
Version: 1,
Uploaded by: Administrator,
Date Uploaded:
26 November 2022
Warning
You are about to be redirected to a website not operated by the Mauritius Research and Innovation Council. Kindly note that we are not responsible for the availability or content of the linked site. Are you sure you want to leave this page?
A chatbot is a software that is able to autonomously communicate with a human being through text and due to its usefulness, an increasing number of businesses are implementing such tools in order to provide timely communication to their clients. In the past, whilst literature has focused on implementing innovative chatbots and the evaluation of such tools, limited studies have been done to critically comparing such conversational systems. In order to address this gap, this study critically compares the Artificial Intelligence Mark-up Language (AIML), and Sequence-to-Sequence models for building chatbots. In this endeavor, two chatbots were developed to implement each model and were evaluated using a mixture of glass box and black box evaluation, based on 3 metrics, namely, user’s satisfaction, the information retrieval rate, and the task completion rate of each chatbot. Results showed that the AIML chatbot ensured better user satisfaction, and task completion rate, while the Sequence-to-Sequence model had better information retrieval rate.