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Executive Summary 
Flash floods are rapidly occurring events usually associated with very intense rainfall. Their fast 

manifestation considerably restricts the possibilities for the issuing of warnings. They are considered as 

one of the most hazardous natural events, which are frequently responsible for the loss of lives and 

severe damage to infrastructure and the environment. During recent years, Mauritius has witnessed 

different occurrences of flash flood. The two most significant episodes happened in March 2008 and 

2013, causing a total of 15 reported death cases, over 300 vehicle damages and more than 2000 requests 

for assistance received by the Fire Services. As is the case worldwide, with climate change, this natural 

phenomenon has the tendency of increasing in frequency as well as magnitude. Furthermore, with 

increased urbanisation, more areas are prone to flooding. In an attempt to cope with flash floods, there 

is the need for a nowcasting system. 

 

This study aims at assessing the effectiveness of a low-cost prototype to nowcast flash floods in the 

Mauritian context. A system based on simulation, using Wireless Sensor Network and modern Machine 

Learning techniques has been designed and implemented for the prediction of flash floods. The Wireless 

Sensor Network component reads and collects different features from river flow and rainfall monitoring. 

It has been tested through simulation and is estimated to have a relatively low unit cost. The Machine 

Learning component of the system is based on a deep learning approach with the implementation of the 

Recurrent Neural Network (RNN), and has been trained and tested using simulated datasets. The 

efficiency of the model has been further optimised with the application of Genetic Algorithm, and 

experiments demonstrate a relatively low error in predictions. The results achieved in this study cannot 

be generalized for the Mauritian context at large, but serve as an approach for the development of an 

automated flash flood nowcasting system based on rainfall and water flow monitoring in rivers/canals. 
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Chapter 1  – Introduction 
 

1.1 Background of Study 
Studies have shown that climate change does not only alter the average temperatures in different regions 

around the globe, but also increases the occurrence of certain types of natural disasters (European 

Parliament, 2006; Houghton, et al., 2001). Flood is one among these natural disasters, and its magnitude 

and frequency has increased over the years, making its impact even more significant (Guha-Sapir, et al., 

2012). It is even considered among the most catastrophic natural disasters affecting human lives and 

causing economic damage (Easterling, et al., 2000). In the U.S., it is estimated that flood causes the loss 

of around 100 lives and damages above $2 billion over a year (Sharif, et al., 2006). Similarly, torrential 

rains and flood related fatalities have dramatically increased in Africa over the past half century with 

countries including Burkina Faso, Senegal, Ghana and Niger were the worst hit (Di Baldassarre, et al., 

2010). 

In Mauritius, this issue is becoming of significant importance due to the dire consequences of torrential 

rain and flash floods in March 2008 and 2013. During both episodes, 15 cases of death were reported in 

addition to over 300 vehicle damages and more than 2000 requests for assistance were received by the 

Fire Services (Cabinet Decision, 2008; PQ Written Answers, 2013). In March 2013 particularly, around 152 

millimetres of rain was recorded in less than an hour by the local meteorological service (Disaster Report, 

2013) and this contributed to the rapid rise of water level in rivers that flows from the central plateau 

down to the sea. The city of Port Louis, which hosts the only harbour of the island, was mostly affected as 

water rapidly accumulated around the waterfront, affecting road networks, pedestrian underpass and 

surrounding domestic habitats (lexpress, 2018). Several other regions, such as Bois Rouge, Cottage, Piton, 

Mapou, Fond du Sac are also frequently affected by sever flash flood occurrences (Week-End, 2016). 

Several inhabitants in these regions often have to leave their flooded houses to seek assistance for basic 

needs, provided by relatives, other inhabitants, government and Non-Governmental Organisations 

(NGOs). 

 

1.2 Problem Statement 
Based on the preliminary literature survey, it is apparent that not enough consideration has been given 

to the problem of flash flood in Mauritius and few technological-based solutions have been proposed. 

Additionally, existing weather monitoring technologies and emergency warning systems in Mauritius have 

not been very effective. It has been noted that a flood prediction and mitigation map for Mauritius has 

been developed, focusing on parameters including maximum surface water depth, street water depth, 

flow velocity and hazard level (Mauritius Research Council, 2016). Although this model has been projected 

as a vital tool to identify flood prone regions, it does not automatically predict flash floods occurrences. 

Nowcasting this phenomenon is critical in order to take early actions to reduce damage and loss of lives. 

Also, existing systems usually require expert hydrologists to monitor real-time data 24 hours a day and 

run sophisticated computational models (Furquim, et al., 2014). Although data mining approaches have 

been applied to hydrological data, no specific and effective algorithms have been derived using machine 

learning approaches. 
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While warning systems exist in developed countries, these cannot be readily applied to the local context 

due to the different environmental variables involved and are often very costly. As such, a low-cost system 

that can automatically make predictions based on a Machine Learning approach is necessary. 

 

1.3 Aim and Objectives of Project 
This project proposes to investigate, design, develop and evaluate a low-cost automated flood warning 

prototype system taking into consideration the constraints and requirements of the Mauritian context. 

The system consists of a Wireless Sensor Network (WSN) for monitoring water level in rivers and the 

collected data are automatically analysed through Machine Learning models for nowcasting. The 

proposed system therefore does not directly depend on the availability of local experts to predict the 

probability of an imminent flood. Although the role of a subject expert is important for data analysis, they 

might not be available in all specific high-risk regions of the island all day round. Such a system has the 

potential to provide early warning for decision makers within reasonable time such that timely actions 

could be taken by key stakeholders so as to reduce damages. The aim and objectives of the project are 

described as follows. 

The aim of this study is to investigate, design, develop and assess the effectiveness of a low-cost prototype 

system to nowcast flash floods using a combined approach based on wireless sensor networks and 

machine learning techniques. The objectives of this project are: 

Obj1: To investigate parameters involved in nowcasting of flash floods within the Mauritian context, 

Obj2: To critically review and assess the relevance of existing models pertaining to nowcasting of flash 

floods within Mauritius, 

Obj3: To assess the availability of data in Mauritius to use machine learning in nowcasting flash floods 

within the island, 

Obj4: To design and develop a low-cost prototype for sensing and collecting environmental data 

pertaining to flash flood detection, 

Obj5: To assess the accuracy of machine learning techniques, and propose an efficient algorithm to 

assist in flash flood nowcasting in Mauritius, 

Obj6: To evaluate the prototype using available data and provide recommendations on the combined 

approach. 
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Chapter 2 - Flash Floods and Associated Impacts 
 

2.1 The Growing Climate Change Concerns for Mauritius 
Climate change is the result of global warming, which refers to the rise of average surface temperatures 

on earth, primarily due to the use of fossil fuels which releases greenhouse gases in the atmosphere 

(Climate NASA, 2018). According to the same source, a range of effects have been noticed on the 

ecosystem, including rising sea levels, droughts, heat waves, changes in precipitation patterns and severe 

weather events. Higher temperature causes greater evaporation which increases the water vapour 

content in the atmosphere (Trenberth, 2011). Hence, extratropical and tropical rain, tropical cyclones and 

snow storms are higher producing more intense events, increasing the risk of flooding.  

On a worldwide scale from 1980 to 2009, flood has caused more than 500,000 deaths and affected more 

than 2.8 billion people (Doocy, et al., 2013). In the U.S, flood accounts for more than 4000 deaths from 

1959 to 2005 and costs about 8 billion US Dollars per year over 1981 to 2011 (U.S Global Change Research 

Program, 2014). As per (U.S Global Change Research Program, 2014), heavy downpours increased by 30% 

on average over the year 1901-1960. Even in Mauritius, flash floods have had various negative impacts. 

Mauritius, as a Small Island Developing State (SIDS), is highly vulnerable to the effects of climate change 

and its negative impacts on socio-economic development and it has been reported that SIDS contribute 

to only 1% of the global GHG emission, are the ones to suffer most from the impacts of climate change 

(Ministry of Environment and Sustainable Development Division, 2015). According to the World Risk 

Report (2014), Mauritius is ranked as the 14th country with the highest disaster risk and ranked 7th on the 

list of countries most exposed to natural disasters. Mauritius is highly vulnerable to the adverse impacts 

of climate change, manifesting itself in several ways, including intense cyclones, abnormal tidal surges, 

prolonged droughts, flash floods, increase of sea surface temperature among others (INDC, 2015). 

Meteorological observations have confirmed a change in the climate parameters of Mauritius. An average 

temperature rise of 0.74 degrees Celsius over mainland and 1.1 degrees Celsius over Agaléga have been 

recorded, precipitation has decreased by 8% between 1950 and 2008 but the frequency of extreme 

climatic events is on the rise as well as the extent of damage to infrastructure and toll on human life. The 

intensification of cyclones and heavy precipitations in shorter periods of time has also been observed  

(Ministry of Environment and Sustainable Development Division, 2015). 

Table 2.1 shows some of the main observed impacts of climate change since 1950 to 2017 and Table 2.2 

shows prediction impacts of climate change in Mauritius. The data shows that although there is a decrease 

in annual rainfall and more hot days, more torrential rainfall and cyclones are expected in shorter amount 

of time, representing high risks of flash floods.   

YEAR OBSERVED EFFECTS 

SINCE 1950 Decrease in annual rainfall around 8% 
1998 - 2007 Mean rise sea level of 2.1mm – 3.8mm per year. 
2008 AND 2013 Flash floods resulting in loss of lives and infrastructure. 
1999 AND 2011 Worst drought. 

2008 
Rise of temperature by 0.74 degrees Celsius compared to 1961-90 mean. 
Increase in the annual number of hot days and warm nights. 

2017 Increase frequency of extreme weather events, torrential rainfall and cyclones. 
Table 2.1: Observed impacts of climate change in Mauritius 
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YEAR PROJECTED IMPACTS 

AS FROM 2008 More frequent and longer heat waves in summer. 

AS FROM 2017 
Increase in number of intense tropical cyclones. 
Increase in heavy precipitation with increased risk of flash flood. 

BY 2050 Decreasing trend of 8% in annual rainfall. Decrease up to 13% water resources. 
BY 2100 Live corals to be reduced by 80-100% in the event of 3.28 degrees Celsius rise 

in temperature 
Table 2.2: Projected impacts of climate change in Mauritius 

Due to climate change flash floods have been a major threat to Mauritius resulting in victims and 

infrastructural damages. Torrential rain causing flash floods in March 2008 and 2013 reported 15 cases of 

death, over 300 vehicle damages and more than 2000 requests for assistance received by the Fire Services 

(Cabinet Decision, 2008; PQ Written Answers, 2013). Appendix A provides a list of flood prone areas within 

Mauritius. (NDRRMC, 2017) 

 

2.2 Flash Floods and Associated Negative impacts 
During recent years, different major flash floods occurred and these are described as follows: flash flood 

is a phenomenon which occurs suddenly due to heavy rain over a short period of time. It is often 

accompanied by other hazards like landslides and mud flows which causes damage to infrastructure and 

may also result in loss of lives (Collier, 2007). In Mauritius, torrential rain alert is set when 100 millimetres 

of widespread rain falls in less than 12 hours and is likely to continue for several hours (Mauritius 

Meteorological Services, 2018). Flash floods are caused by heavy rainfall or torrential rain during a short 

lapse of time generally between three to six hours. In urban areas, flash floods are more severe as water 

does not infiltrate the impermeable ground and rivers as well as water canals overflows on land. People 

are usually caught off-guard with the rapid rise of water level.   

2.2.1 26th March 2008 
On 26th of March 2008, torrential rain was caused by the trail of clouds from cyclone Lola (2014). The soil 

was already saturated with previous precipitation of the cyclone, an unexpected change in directory of 

cyclone Lola towards North East of Mauritius caused heavy rainfall and flash floods. The torrential rain 

warning was activated at 11.00 a.m. on reaching 100 mm of rainfall in 13 hours and the soil permeability 

was not taken into account. 

As impacts, four persons lost their lives following the torrential rainfall and flash floods mainly in the 

North, East and South. A student age 13 and a woman age 58 were swiped away by torrents of muddy 

water at Mon Gout. A body was found in his house drowned by a nearby overflowing river in Saint Remi, 

Flacq. The fourth victim age 18 was found drowned in Bel Air. 

2.2.2 30th March 2013 
On 30th of March 2013, more than 136mm of rain fell within two hours that is between 13h00 and 16h00. 

Members of the public were taken by surprise by the sudden downpour. The Port Louis area between the 

Caudan Flyover and the Place D’Armes was drained by four main water courses namely the Deviation 

Canal which runs along Signal Mountain Road, the drain along Volcy Pougnet Street, Le Pouce Stream 

which passes behind Cinema Majestic and Le Pouce Canal which passes in front of the Museum and 

Shoprite Supermarket. These main water courses are completely flooded. The cumulative effect of the 
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deficient drainage system and the surface run-off generated with the urban area has contributed to the 

flooding. 

During the flooding, the police and Fire Services faced communication problems due to clogged telephone 

network. People were not able to reach the emergency services.  

• The Fire Services do not have sufficient manpower to deal with the situation.  

• The National Disaster Operations and Coordination Centre (NDOCC). 

•  The Cyclone and Other Natural Disaster Scheme 2012-2013 are not equipped to deal with the 

situation and do not make any provision for flash floods as it is a new phenomenon. 

The lack of coordination of the authorities and concerned parties lead to a poor handling of the situation.  

The special bulletin of the Mauritius Meteorological Services (MMS) came late after several places was 

already flooded. The MMS is not equipped in terms of knowledge, skills and equipment to forecast or 

nowcast flash floods. Also, the Water Resource Unit (WRU) lacks the required expertise to predict flash 

floods. 

As impact, following the heavy flooding in Port-Louis, ten people lost their lives. Six human bodies were 

retrieved from the Caudan underpass, two were retrieved from the underground parking of Harbourfront 

Building. One body was found in the Company Garden and the last near KFC outlet of Chaussée Street.  

Figure 2.1 show an increase in death due to flash floods in the period of 1975 to 2013. In addition, serious 

damage was caused to not less than 300 vehicles, homes, and the level of muddy water has also affected 

commercial buildings and stocks of goods, while debris, stones and mud were transported for miles. Figure 

2.2 shows an increase in houses damaged/destroyed from flash floods in the period of 1975 to 2013. 

According to economist Eric Ng the estimate cost of damages caused is between Rs 400-500 Million (Ng, 

2013). 

This natural disaster has revealed the flaws in our system of drains, which implies a significant investment 

in the short-term remedy. According to records from national parliament, a sum of Rs 500 million were 

disbursed after the flash flood for the construction of drains across the country. An SMS alert system was 

also announced, as well as better equipment for the Mauritius Meteorological Service.r (Defi Media 

Group, 2013). 

 

 

Figure 2.1: Death from flash floods trends (DesInventar) 
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Figure 2.2: Houses Destroyed/Damaged from flash floods Trends (DesInventar) 

2.2.3 Torrential Rainfall & Cyclone Berguita 
In January 2018, the country faced huge rainfall events. These events led to many cases of floods, 
landslides, river overflow and obstructed drains due to high water flow carrying debris. In the period of 
4th to 8th January 2018, heavy rainfall and cyclone Berguita caused floods and water accumulation in 
various regions. The water level at Canal Dayot, was at the maximum which posing a potential threat to 
the locality. Montagne Blanche and Poste-De-Flacq were also affected by floods. 

Torrential rainfall on the 25th January 2018, caused flash floods in the region of Quatre-Bornes, Albion, 
Baie-du-Tombeau and Point-aux-Sables. La Louise in Quatre-Bornes businesses suffered loss with goods 
and electronic appliances being damaged by muddy water. Drains and water canals were flooded. In 
Albion, a road flooded by a river restricting access. In Baie-du-Tombeau, houses, yards and roads were 
flooded due to obstructed water canal. 

From January 3rd to 11th 2018, the fire brigade received 705 calls on their emergency line and they 

responded 420 times including 214 homes being flooded (Deputy Chief Fire Officer). 

On the 23rd February of 2018, heavy rainfall and flooded river caused a flash flood at Réunion Road, 

Vacoas. The quick rise of water flooded two schools (Sai Satya School and Quinze-Cantons School). 

Children and staff members had to take refuge in the upper floors of the building until they were rescued 

by the Special Mobile Force (SMF) officers. Figure 2.3 shows an increase in houses damaged/destroyed 

from torrential in the period of 1975 to 2013, no statistical data is available beyond 2013. Figure A.1 to 

Figure A.8 (See appendix A, Flood Damages) shows some flooded photos of regions in the period of events 

in January.  

 

Figure 2.3: Houses Destroyed/Damaged from torrential rain trends (DesInventar) 
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2.3 Reducing the Impacts of Flash Flood 
It is apparent from the previous section that flash floods can be very destructive, causing damage to 

properties, loss of life and having an impact on the economy. It is mainly caused by a combination of the: 

obstructed drains, overflowing of drains and rivers, water saturated soil from prolonged rainfall, primarily 

due to torrential rainfall and heavy rainfall during a short lapse of time. In the following section, 

investigation on how other countries deal with flash flood forecasting is conducted. 

2.3.1 Flash Flood Forecasting in Northern Austria 
A spatially distributed model for flash flood forecasting is in operational use in Northern Austria since 

2006 (Blöschl, et al., 2007). The model uses a grid based of 1 km square over 1550 km square Kamp 

catchment. The model is able to simulate snow processes, soil moisture processes and hill slope scale 

routing. Each grid cell uses a total of 21 parameters for the simulations, which includes 5 snow model 

parameters, 5 soil moisture accounting parameters, and 11 hillslope scale routing parameters. As input, 

35 rain gauges are used with 19 of them registering data at 15 minutes interval and the remaining works 

on a daily level. The precipitation forecasts are made by the Austrian Meteorological Office (ZAMG). The 

forecasts are at 15 minutes temporal resolution over a lead time of 48 hours and are estimated as two 

components. The first component is an observation-based extrapolation or nowcasting of the 

interpolated precipitation field using motion vectors determined from consecutive fields. The second 

component is a weighted mean of the forecast fields of the ALADIN (Aire Limitée Adaptation dynamique 

Développement InterNational) and ECMWF (European Centre for Medium Range Weather Forecasts) 

numerical weather prediction (NWP) models by Wang, et al (2006). The two components are weighted 

together by another weighting function to provide better predictions and reduce precipitation error by 

20-30%. The weighing function gives full weight to the nowcast during the 2 hours and decreases linearly 

to zero at 6 hours, remains at zero for larger lead times. Air temperature from eight stations are added to 

the 1 km grid. Precipitation and air temperature parameters are used to estimate state variables such as 

soil moisture, soil and groundwater reservoir storage and snow water at each time step. Kalman Filter 

function1 is used to update the model states variables based on observed runoff. Existing data of 12 

stream gauges are used from 1990 to 2005. All the parameters and state variables are then used for flash 

flood forecasts over the lead time of 48 hours. Two algorithms have been implemented that use runoff in 

real time. The first algorithm adjusts the catchment soil moisture state by the Ensemble Kalman Filter and 

the second algorithm exploits the autocorrelation of the forecast error and consist of an additive error 

model that updates runoff directly. The average forecast errors range from 10 to 30% for 4 to 24 hours 

lead time, respectively. Comprehensive model test and simulation results accuracy indicated that the 

methodology used is feasible and performs well for a range of hydrological situations and a range of 

temporal scales. However, the performance of the model diminished on the accuracy of the rainfall data, 

biases in rainfall is translated into biases in soil moisture and hence lowering forecast accuracies. 

2.3.2 Flash Flood Forecasting in Australia 
The Bureau of Meteorology (BoM) operates a real-time flood forecasting and warning system 

(Hapuarachchi & Wang, 2008). In 1987 an automated flash flood warning system called ALERT was 

introduced in local agencies to alert officials. The system can be used on small catchment areas and large 

river basins to detect floods and issue alerts It uses radio signals to transfer real time data of rainfall and 

 
1 Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of 
measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of 
unknown variables 
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water level to a station where the data are analysed. In some cases, data are directly input to the model 

to assess the magnitude and timing of flood events. Flooding can be assessed using manual look-up tables 

provided by the BoM. An alert is sent if the criteria of rainfall intensity or stream level is exceeded. 

Similarly, like ALERT, a low-cost flash flood warning system, using sensors, was developed by MacGeorge 

in Hobart, Tasmania in 1997. When water reaches the predefined level, the system issues a warning via 

telephone with a played synthesized voice alerting the recipient of the river location and level. 

2.3.3 The European Flood/Flash Flood Forecasting System (EFFS) 
The EFFS provides daily information on potential floods for large rivers, and flash floods in small 

catchments. The system consists of four basic components (De Roo, et al., 2003): 

1 global numerical weather prediction models, 

2 optional downscaling of global precipitation using a regional Numerical Weather Prediction 

model, 

3 a catchment hydrology model comprising a soil water balance model with daily time step and a 

flood simulation model with hourly time step, 

4 a high-resolution flood inundation model. 

All the components are integrated within a generic modelling framework linked to a central database. The 

system uses large scale weather forecast derived from the European Center for Medium Range Weather 

Forecasting Ensembled Solution (MRWFEPS). MRWFEPS forecast weather variables for each cell of 40-80 

km horizontal resolution every 6h for up to 10 days lead time.  

A higher spatial and temporal resolution provides more realistic weather predictions. To increase the 

forecast spatial and temporal resolution of the output of MRWFEPS, two regional NWP models are used: 

the DMI-HIRLAM model and the DWD-LM model. The DMI-HIRLAM model is a hydrostatic grid-based 

model that produces hourly output for the whole of Europe for lead times of up to 72h at approximately 

11 km horizontal resolution. The DWD-LM uses a non-hydrostatic representation of the atmosphere for a 

grid covering Western Europe only at a horizontal resolution approximately 7 km and produces outputs 

in the range of 6 to 48 hours. 

The output from DMI-HIRLAM and DWD-LM models are re-formatted and used in the raster-based 

distributed rainfall-runoff modelling suite, LISFLOOD (De Roo, et al., 2000; 2001). The LISFLOOD-FF 

simulates river flow and flooding at hourly time steps and 1 km square
 
grid resolution with topography, 

precipitation amounts and intensities, antecedent soil moisture content, land-use types, and soil types as 

variables. A two-dimensional hydraulic module, LISFLOOD-FP is used to model the overbank flows and 

inundation areas.  

The performance of EFFS system was tested using data from the Meuse River flood. The results were 

encouraging and the system produced flood peaks with acceptable accuracy. The EFFS simulation driven 

by the deterministic forecasts of rainfall can capture the flood peaks 5 days ahead, but thereafter failed 

to capture the main body of the flood. The inundation model (LISFLOOD-FP) was run using the observed 

flow and compared to observed inundation extent derived from oblique aerial photography. The model 

was run at 50m resolution with a 5 sec time step and correctly classified inundation extent in 85% of 

model grid cells. 
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2.4 Critical Analysis 
Since flash floods are relatively new weather phenomena in Mauritius, all previous occurrences have not 

been properly predicted and in some cases not predicted at all. Prem Saddul, Geomorphologist 

(lexpress.mu, 2018), confirmed that new regions are likely to be at risk of flooding. Commercial centres 

with large asphalt parking and new urban areas where concrete reduces the rate of water infiltration in 

the soil. Since pores in the earth are saturated with water and earth surface area has been reduced, the 

water tends to stay on the surface for longer periods even after a short rainfall period. As the island 

topology indicates a slope of eight degrees going to the sea, the flow of water volume is high with fast 

velocity. Water arriving near a small bridge or a partially blocked passage, is susceptible to overflow and 

cause flash floods.  It therefore, is essential to study existing methodologies and parameters involved in 

flash flood forecasting and nowcasting for Mauritius. 

We have seen an increase in extreme weather conditions that are caused by the rise of average surface 

temperatures as a result of climate change. Amongst others, intensification of cyclones and heavy 

precipitations have been observed in Mauritius, causing frequent accumulations of water and flash floods, 

resulting in dramatic impact of human loss and infrastructural damages. Little work has been done at 

national level to mitigate and alert the population in case of an upcoming flash flood, while several 

solutions exist at international level. In Northern Austria a spatially distributed model for flash flood 

forecasting uses a grid based of 1 km square over 1550 km square Kamp catchment and is able to simulate 

snow processes, soil moisture processes, hillslope scale routing and forecast flash flood at a temporal 

resolution of 15 minutes over a lead time of 48 hours.  In 1987, Australia Bureau of Meteorology (BoM) 

introduced real-time a flash flood warning system called ALERT which is able to send alerts to officials if 

the rainfall intensity of stream water level is exceeded. Flood is assessed using manual look-up tables 

provided by BoM. To forecast flash flood the EFFS combined several models: MRWFEPS(weather 

forecasting), DMI-HIRLAM(hydrostatic grid base model), DWD-LM(non-hydrostatic representation of the 

atmosphere), LISFLOOD-FF(simulates river flow and flooding) and LISFLOOD-FP(model overbank flows and 

inundation areas). While most of the mentioned models are functional, they are not currently applicable 

in Mauritius as their complexity requires high resolution radar and satellite data. In the next chapter we 

investigate on rainfall and flash flood forecasting and nowcasting models that make use of machine 

learning techniques and wireless sensor network for prediction. 
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Chapter 3 - ICT Driven Flash Flood Nowcasting 

3.1 Technology Driven Flash Flood Nowcasting 
During recent years, different studies have attempted to investigate the parameters that are involved in 

forecasting of flash floods (Doswell III, et al., 1996; Collier, 2007; Blöschl, et al., 2008). Based on the 

identified parameters, different models have also been proposed to forecast flash floods although their 

effectiveness remain questionable. As such, effective flash flood forecasting remains one of the most 

challenging areas in hydrology due to the uncertainties associated with rainfall forecasts (Hapuarachchi, 

et al., 2011). This also led to a change in flash flood research direction from forecasting to nowcasting. 

Nowcasts refer to short-time and space-specific forecasts of periods less than a few hours, and may 

include storm initiation, growth, dissipation, and storm features such as wind speeds and direction and 

precipitation rates (Sharif, et al., 2006). As the need for reliable flash flood forecasting has increased in 

recent years, different works have been undertaken within different regions to nowcast this 

phenomenon. A spatially distributed flash flood forecasting model was conceptualised and evaluated for 

the region of northern Austria (Blöschl, et al., 2008). Similar work was undertaken for the mountainous 

Mediterranean basin (Dolcine, et al., 2001)  and Slovenia (Grillakis, et al., 2010), among others. However, 

in addition to nowcasting models, recent research focus has shifted towards technology driven flash-flood 

nowcasting. 

Abdul-Kader, et al., 2018 propose an evaluation of two Artificial Neural Network (ANN) training models 

consisting of 4 nodes in the input layer, 20 nodes in one hidden layer and 1 node in the output layer 

against Redial Basis Function (RBF) and four input weather variables were used. Wu & Chau, 2006 evaluate 

two ANN training algorithms, namely the Genetic Algorithm-Based Artificial Neural Network (ANN-GA) 

and Adaptive-Network-Based Fuzzy Inference System (ANFIS) against linear regression for forecasting 

flood. Basha, et al., 2008 and Guesmi, 2017 propose a wireless sensor network (WSN) to monitor and 

predict flash floods events by the use of sensors nodes capturing weather and river parameters in real-

time. The data collected are processed by a flood prediction algorithm. Chiang, et al., 2007 and Chang, et 

al., 2014 propose an ANN model to merge multiple rainfall sources and rainfall forecast for better flash 

flood forecasting by assimilation of satellite-derived and radar-derived precipitation forecasts provided 

by PERSIANN-CSS and QPESUMS combined with rain gauges parameters as input. Furquim, et al., 2014 

evaluate the flood nowcasting accuracy of seven machine learning classification techniques with the input 

data type used and window sizes. Artigue, et al., 2011 present a recurrent neural network (RNN) model 

for flash flood forecasting without considering rainfall forecasts nor previous discharge. Levenberg-

Marquardt (LM) algorithm is use to train the multilayer perceptron (MLP) model and two models with 

different criteria are tested and performance compared. Boukharouba, et al., 2013 present support vector 

regression machine learning approach to flash flood forecasting without rainfall forecasts, based on 

agglomerative hierarchical clustering of flood events. Two models are tested and evaluated, global model 

and specific model both with different criteria. 

A key technology for common flash flood warning systems is the wireless sensor networks (WSN) and to 

a small extent machine learning. WSN provides the flexibility of having small computing devices with 

sensors and communication capabilities for monitoring purposes without direct human intervention. 

Systems based on WSN for monitoring water levels in rivers have been studied and proposed for various 

locations around the world (Basha, et al., 2008; Furquim, et al., 2014; Guesmi, 2017). On the other hand, 

an early warning system named RAPIDS, based on Machine Learning, focuses on the utilization of rainfall 

data to predict flooding in urban areas using Artificial Neural Network. Furquim et al. (2014) present a 
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combination of WSN and 7 Machine Learning techniques for flash flood nowcasting in Sao Carlos, Brazil. 

Additionally, a low-cost automated sensor network has been proposed that runs prediction software 

which measures and computes in real time in order to address changing conditions during a flood (Basha, 

et al., 2008). These technology-driven flash-flood nowcasting solutions are described in the next section. 

 

3.2 WSN & Machine Learning Based Flash Flood Prediction 

3.2.1 Combining wireless sensor networks and machine learning for flash flood nowcasting 
Furquim et al. (2014) discuss the evaluation of seven machine learning techniques. The results indicate 

that different approaches are required to improve the accuracy of each technique, such as using the 

vector of an attribute as opposed to raw data. The following ML techniques have been tested with two 

window sizes (w=2 and w=10 hours) which is the number of previous readings used: 

• Decision Trees: J48, Random Forest, Random Tree, BFTree, Simple Cart 

• ANN: Multi-Layer Perceptron – MLP 

• Bays Net: Bayesian Learning 

The result of all the techniques have been compared to find the most performant one. Wireless Sensor 

Network (WSN) of 3 sensors provides water level data and snapshots from rivers and hydrographic basins. 

Multi-Layer Perceptron (MLP) and BFTree ML Techniques have proved to be more efficient. The 

forecasting for 3 minutes yields and accuracy of 66%. The window size of 5 and 10 vary slightly. However 

better accuracy can be achieved by taking data from all sensors and adding more environmental 

parameters to the prediction algorithms.  

3.2.2 Model-based monitoring for early warning flood detection 
Basha (2008) created a statistical linear regression algorithm to predict flash flood, see Appendix A.4.1 for 

detailed algorithm description. The algorithm uses data from the node sensor network in real-time. The 

model can self-calibrate and adapt itself to the latest seasonal changes in weather condition. Inputs of 

past flow, air temperature and rainfall data taken at given time intervals are processed by the algorithm 

to produce a prediction. The model has been tested with 7 years of existing data from the Blue River in 

Oklahoma. The criteria for evaluating the algorithm quality are: the modified correlation coefficient, the 

false positive rate of prediction, and the false negative rate of prediction. To find the proper training 

window, the model run several times with windows of 3, 6, 9, 12 months covering all seasons. The model 

computes prediction of 1 hour and 24 hours. The autocorrelation of the model of 1 hour is near 1 and 

decreases to 0.627 at 24 hours. The prediction performs equally well for all window sizes using last flow, 

temperature and rainfall value. Better results have been obtained when using errors associated with the 

latest result. The developed model performed better than DMIP (Distributed Model Intercomparison 

Project), persistence and climatology models at 1 and 24 hours. A calibrated DMIP model outperforms the 

developed model by 3% with DMIP predicting only at 1 hour. The flood prediction algorithm has been 

implemented in a large scale WSN system in real environmental conditions using multiple sensing sensors 

and communication devices. The Multiple linear regression algorithm provides accurate predictions and 

fast computation is required if computation is done on low power nodes. However, more powerful and 

computation intensive algorithm is needed to better predict flash flood with more parameters such as soil 

moisture, land slope and air humidity. 

To be able to monitor and predict floods events, a WSN consisting of nine nodes were built at the Aguan 

River Basin in Honduras. The long-range nodes consist of sensing nodes and communicate over a distance 
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of 25 km at 144 MHz radio and uses higher power to operate, which implies more online time for 

computation. The sensing nodes communicates at 900 MHz using low power. To save power transmission 

of data occurs every 10 minutes and measurement every 5 minutes. The nodes (3.7 V) are powered with 

lithium polymer batteries along with photovoltaic panels for charging. Transmitting 144 MHz signal uses 

25W, occurring 6 times every hour for 15 seconds. The radio system uses a 12V lead-acid battery along 

with 6W photovoltaic panel. Antennas are located 5 m up, requiring antenna towers. The sensing nodes 

log raw data, compute data statistics over each hour and inter-transmission time period, and analyses 

data for indication of potential sensor failures. These nodes transmit regularly at 900 MHz creating mini 

sensors network. The water level sensor system is developed in an external box and communicates via 

RS485 with the sensing node. The box consists of a LPC2148 microcontroller, RS485 interface, Honeywell 

24PCDFA6A, and instrumentation amplifier. Computation nodes connects to mini-network of sensors and 

perform distributed computation of prediction. Data arriving from nearby sensors and other computation 

nodes are recorded and evaluated for correctness. Eventually, the data goes through the model which 

computes the uncertainty of the prediction, and request additional data from sensing nodes to reduce 

the uncertainty. Computation nodes communicates to sensing nodes via 900 MHz and to each other via 

144 MHz. The work of Basha et al. provides a very interesting WSN efficient architecture at a relatively 

low cost. Sensors used are simple and readily available or can be substituted for similar sensor. 

3.2.3 Merging multiple precipitation sources for flash flood 
Chiang et al. (2007) propose a Recurrent Neural Network (RNN) model to merge multiple precipitation 

sources for flash flood forecasting with lead time up to three hours, see Appendix A.4.3 for detailed 

algorithm description. The effectiveness of combining gauge observation and satellite-derived 

precipitation on flood prediction has been investigated. Satellite-based rainfall forecast is provided by the 

PERSIANN CCS (Honga, et al., 2004) with the spatial and temporal resolution of 4 km grid and hourly, 

respectively. The optimal merging parameters in both calibration datasets showed that the satellite-

derived precipitation has limited contribution (5%) to merging procedures. However, the merged 

precipitation helped to improve the flood forecasting with improvement of root mean square error 

(RMSE) for about 2–14%. The contribution from gauged precipitation to the merged procedure depends 

greatly on the number of gauges and the quality of data. Despite improvements, the system is site specific 

as satellite derived data is not available everywhere.  

3.2.4 Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-

sensor information 
Chang, et al. (2014) propose the use of neuro-fuzzy or ANFIS (Adaptive Network-Based Fuzzy Inference 

System) networks with the assimilation of multi-sensor rainfall sources (gauge measurement, and radar 

and satellite products) for watershed rainfall forecasting of 1 to 2 hours lead time. Back Propagation 

Neural Network (BPNN) was used for bias correction of both radar and satellite precipitation products 

generated through the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors 

(QPESUMS) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks-Cloud Classification System (PERSIANN-CCS), respectively. Genetic Algorithm (GA) was used 

after bias correction for finding the optimal weighting factor in merging the different sources of 

precipitation data including gauge measurements. Figure 3.1 shows a flowchart of the model. Two 

scenarios were defined to test the ANFIS rainfall forecasting model. Scenario 1 used rain gauge, corrected 

PERSIAN-CSS and QPESUMS precipitation products as input. Scenario 2 used assimilated precipitation 

product as input. Ways of evaluating the model performance are: correlation coefficient (CC), root mean 

square error (RMSE), normalized root mean square error (NRMSE), and mean absolute error (MAE). Figure 
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3.2 shows that ANFIS model with assimilated inputs from scenario 2 proved to be more accurate and 

stable to forecast rainfall in comparison to scenario 1 with 25% and 19% improvement for one and two 

hours ahead in terms of RMSE. This model also uses satellite derived data, the same disadvantage as 3.2.3 

applies for this model. 

 

 

Figure 3.2: Comparison of not assimilated and assimilated ANFIS 
model performance 

3.2.5 Artificial Neural Network based algorithms in forecasting flood  
Wu and Chau (2006) demonstrate an evaluation of Genetic Algorithm-Based Artificial Neural Network 

(ANN-GA) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) against linear regression in 

forecasting flood , see Appendix A.4.2 for detailed algorithm description . A hybrid integration of ANN and 

GA may be able to increase solution stability and improve performance of an ANN model. ANFIS model is 

able to enhance the intelligence when working in uncertain, imprecise, and noisy environments and to 

accomplish faster convergence. It possesses the characteristics of both the neural networks, including 

learning abilities, optimization abilities, connectionist structures, and fuzzy control systems, including 

human like “if-then” rule thinking and ease of incorporating expert knowledge. In this system, the 

parameters defining the shape of the membership functions and the consequent parameters for each rule 

are determined by the back-propagation learning algorithm and the least-squares method, respectively. 

For ANN-GA model, a three-layer network is adopted with three input nodes and one output node with 

data normalised to between 0 and 1. It is found that having 3 nodes in the hidden layer is optimal. For 

ANFIS model, more categories yield higher accuracy, but have the disadvantages of larger rule bases and 

higher computation cost. The optimal number of hidden nodes is 3, obtained by trial and error. The 

comparison of three models on a 24h lead time shows that the absolute error is largest for the LR model 

and smallest with the ANFIS model, as shown in Figure 3.3. The ANFIS model gets the highest accuracy 

and requires less training time than ANN-GA model. However, ANFIS model requires more parameters 

than the other two models, as shown in Table 3. The approach of using LR model for comparison is 

interesting as it set a baseline for the other models. However, the ANN-GA and ANFIS algorithms are not 

well described and there is no mention of the number of training examples used. 

Figure 3.1: Flowchart of model 
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Figure 3.3: Performance comparison in terms of absolute errors for different algorithms 

 

Models  RMSE_traning 

(m)  

RMSE_validation (m)  Training time  

(s)  

Number of 

parameters  

LR  0.238  0.237  Nil  4  

ANN-GA  0.213  0.226  135  16  

ANFIS  0.204  0.214  49  135  

Table 3.1: Performance comparison for different models in flood prediction 

3.2.6 Forecasting Rainfall based on Computational Intelligent Techniques  
Abdul-Kader, et al. (2018) compared two Artificial Neural Network (ANN) training models, Partial Swarm 

Optimisation (PSO) and Levenberg-Marquardt (LM) Back Propagation (BP) based on Multi-Layer 

Perceptron (MLP) against Radial Basis Function (RBF) for rainfall forecasting. MLP is known as a supervised 

neural network, it requires parameters of historical data as input. MLP consist of input layer, one or 

several hidden layers and an output layer. Outputs with several hidden layers are more accurate but 

requires more time to train. BP algorithm is popularly used to train MLP. LM algorithm is used to train 

MLP for nonlinear problems and is more powerful than gradient descent algorithm but does not always 

reach a global minimum. RBF consist of three layers, the input layer, the output layer and one hidden 

layer. PSO is a stochastic algorithm that mimic the behaviours of animals as fish schools or flock of bird 

where there is always a bird that has optimistic position to the food source and others attempt to follow. 

In this algorithm, each particle works on finding the global minimum by changing velocity and position 

accordingly. The proposed technique for forecasting rainfall consists an ANN that has 4 nodes in the input 

layer, 20 nodes in one hidden layer and 1 node in the output layer which are trained by PSO and LM 
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algorithms and was compared to RBF model. Weather data of Cario City, (2009) were used to train (90%) 

and test (10%) the models with law temperature, high temperature, humidity and wind speed as input 

parameters. The three algorithms were compared using statistical method RMSE. Training and testing 

proved MLP-PSO to be the most efficient model with least error compared to MLP-LM and RBF, as shown 

in Table 3.2. However, it is worth noting that PSO complex hence requiring more computational power. 

This might not be the best solution for low power computation device. 

Technique Training RMSE Testing RMSE 

MLP-PSO 0.12 0.14 

MLP-LM 0.15 0.18 

RBF 0.35 0.44 

Table 3.2: Comparison of three models 

3.2.7 Flash floods forecasting without rainfall forecasts by recurrent neural networks. Case 

study on the Mialet basin (Southern France)  
Artigue, et al. (2011) presents a recurrent neural network (RNN) model for flash flood forecasting without 

rainfall forecasts nor previous discharge considered. 58 events with detection threshold of 100 millimetres 

during 48 hours are selected from 17 years of rainfall and discharge data of Mialet basin in France. 

Levenberg-Marquardt algorithm is used to train and minimise the mean squared error of the multilayer 

perceptron model and regularisation method is used to minimize the number of parameters of the model. 

Two models is tested; first a linear and second a non-linear model. The first model is a standard multilayer 

perceptron and the second model network contain a superposition of a multilayer perceptron and of a 

linear model as shown in Figure 3.4, where w1-w5, w2-w6, w3-w7 are rain gauges of Mialet, Saint-Roman-

de-Tousque and Barre-des-Cévennes for linear and non-linear respectively. W8 is the average cumulative 

rainfall (ACR) and Nc for non-linear model as shown in  Figure 3.4: MLP linear and non-linear. Four criteria 

are used to quantify the quality of the forecasts. Nash criteria is used to determine the coefficient 

predicted and the observed discharge, percentage of the peak discharge (PPD) compares the ratio of the 

forecast and the observed maximum peak discharges, synchronous percentage of peak discharge (SPPD) 

is used to compare the ratio of the estimated discharge at the instant of the maximum observed peak 

discharge, the time delay between the maximum of the observed peak discharge and the forecast one. 

Table 3. shows the criteria obtained for each prediction with the standard multilayer perceptron. Table  

shows the criteria obtained for each prediction with the non-linear multilayer perceptron. The results 

show that ANN can be used to perform flash flood prediction without rainfall forecast nor previous 

discharge information. The developed models are well evaluated using multiple criteria. 
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Figure 3.4: MLP linear and non-linear 

Table 3.3: Linear performance criteria 

Criterion  Nash  PPD  SPPD  Delay  

k+1 0.76  67%  63%  30min  

k+2  0.74  62%  61%  60min  

k+3  0.73  58%  56%  30min  

k+4  0.83  60%  59%  30min  

Criterion  Nash  PPD  SPPD  Delay  

k+1 0.92  72%  72%  0 min  

k+2 0.93  84%  75%  60 min  

k+3 0.91  77%  75%  90 min  

k+4 0.92  77%  76%  30 min  

Table 3.4: Non-linear performance criteria 

 

3.2.8 Flash flood forecasting using Support Vector Regression: An event clustering based 

approach  
Boukharouba, et al. (2013) presents a support vector regression machine learning approach to flash flood 

forecasting without rainfall forecasts, based on agglomerative hierarchical clustering of flood events. 

Rainfall and water level data collected from 1993 to 2008 in the watershed of Gardon d’Anduze in south-

east of France contains 23 main flood events of 30 minutes sampling period data which is used for training 

and testing of the model. The rain gauge data and water level data were normalised to have a maximum 

value of 0.9 in each input vector. The six rain gauge data was reduced to a single weighted average 

precipitation variable by the Thiessen polygon. Support vector regression (SVR) is a kernel-based method 

with a built-in regularization mechanism, similar to that of support vector machine classifiers. The 

approach consists of clustering the events of the training database for each cluster containing events 

whose model have a similar behaviour. A specific SVR model is designed from each non-singleton cluster 

of events and a global SVR model was designed from all flood events. Cross-validation with grid search 

was used to find the SVR hyperparameters and the rainfall window length. The quality of the model is 

assessed by Nash coefficient and persistence. The specific model except for 30mm forecast yields better 

on test events and got better accuracy of the estimated water level peak than the global model which 

tends to be more linear. 
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3.2.9 Wireless Smart Sensor Networks for Real-Time Warning System of Flash Floods and 

Torrents in KSA  
Guesmi (2017) proposed a wireless sensor networks for real-time flood monitoring and warning system. 

The research aims to set up an early warning system for the event of flash floods and torrents in the 

Kingdom of Saudi Arabia (KSA).  The model analysis uses hydrological data such as water level, water 

velocity, precipitation combined with remote measurement images and geographic models to analyse 

and simulate flood events.  The simulation identifies vulnerable zones and the potential of flood danger 

degree. The proposed WSN architecture consists of groups nodes communicating over short distances to 

reduce transmission power and some nodes capable of long-range communication. The model uses a 

hybrid model composed of centralized and distributed model to combine advantages and cancel out the 

disadvantages of both models. 

 

Figure 3.5: Guesmi WSN architecture 

The above Figure 3.5 consists of sensor nodes and computational nodes. The sensor nodes collect data of 

rainfall, water level and water velocity. Computational nodes have large processing powers and 

implement the distributed prediction algorithm. A computational node act as a manned central 

monitoring office. This node verifies the results with the available online information and implements a 

centralized version of the prediction algorithm as a redundancy mechanism, issues alerts and initiates 

evacuation procedures. At each group of nodes, the sensor nodes send collected data to its computational 

node where the prediction take place. Then, the computational nodes send the data to the central (office) 

node and among themselves and can also send detect and send information of malfunctioning nodes. 

Results show that the model can efficiently prioritize the high risk flooded areas and provide detailed 

information for assessing further needs. The downside of this system is that the sensors, computation 

nodes, and software used are very expensive and requires special training to use these devices. 
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3.3 Comparative Analysis of Different Techniques 
Table 3.5 shows different models and algorithms that were used in literature review to forecast rainfall, 

floods and flash floods. Basha’s model makes use of WSN to collect data from gauges and other sensors 

and LR is used to compute data collected and make flood prediction. While Basha’s model is more aligned 

to our objective to make a low cost WSN and machine learning for prediction, other more powerful 

machine learning and Artificial intelligence is worth investigating. ANN based algorithms showed to 

perform better than LR but at the cost of more computation time and more power. 

 Tools 1 Tools 2 Tools 3 Tools 4 Tools 5 Tools 6 

Region Honduras - - - France France 

Technology Sensors - - - - - 

Purpose 
Flood 

Forecast 

Flood 

Forecas

t 

Precipitatio

n Forecast 

Precipitatio

n Forecast 

Flash Flood 

Forecasting 

Flash Flood 

Forecastin

g 

Model 

Implemente

d by 

(Basha, et al., 

2008) 

(Wu & 

Chau, 

2006) 

(Chiang, et 

al., 2007) 

(Abdul-

Kader, et al., 

2018) 

(Boukharouba

, et al., 2013) 

(Artigue, et 

al., 2011) 

Underlying 

ICT concept 
ML, WSN ANN RNN ANN 

Clustering 

Events 
RNN 

Algorithm LR 

ANN-

GA, 

ANFIS, 

LR 

RTRL, 

PERSIAN-

CSS 

RBF, PSO, 

LM 
SVR LM 

RMSE 

0.58(Modifie

d Correlation 

Coefficient) 

0.226, 

0.214, 

0.237 

0.43 
 0.44 ,0.14, 

0.18 

0.99(Nash 

Coefficient) 

0.76(Nash 

Coefficient

) 

Table 3.5: Different tools comparison 

Table 3.6 shows is a list of studies models with features, forecast lead-time (time between the issuance 

of a forecast and occurrence of the event), and advantages and disadvantages of the method used. 

Reference 

(ID) 
Model Method 

Forecast 

lead-

time 

Advantages & Disadvantages 

4.6 

Forecasting 

Rainfall based 

on 

Computational 

Intelligent 

Techniques 

(Abdul-Kader, 

et al., 2018) 

Comparing two training 

algorithms, MLP-LM and MLP-PSO 

for Artificial Neural Network and 

RBF model find the most efficient 

model for forecasting rainfall. 

2h 

MLP based PSO proved to be 

more efficient as the 

algorithm does not fall in a 

local minimum thus getting 

more accuracy. 
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4.9 

Wireless 

Smart Sensor 

Networks for 

Real-Time 

Warning 

System of 

Flash Floods 

and Torrents 

in KSA 

(Guesmi, 

2017) 

Identifies vulnerable zones and the 

potential of flood danger degree. 

The model uses a hybrid model 

composed of centralized and 

distributed model. Sensor nodes 

collect data of rainfall, water level 

and water velocity. 

2h 

The model can efficiently 

prioritize the high risk 

flooded areas and provide 

detailed information. 

4.1 

Combining 

wireless 

sensor 

networks and 

machine 

learning for 

flash flood 

nowcasting 

(Furquim, et 

al., 2014) 

The ML techniques employed 

consist of five types of Decision 

Trees J48, Random Forest, Random 

Tree, BFTree, Simple Cart, one type 

of Artificial Neural Networks 

(Multi-Layer Perceptron – MLP) 

and one type of Bayesian Learning 

(Bays Net). Each tested with two 

window size (i) w=5 and (ii) w=10. 

The results of all the techniques 

were compared to find the most 

performant one. ML environment 

used: WEKA (Waikato Environment 

for Knowledge Analysis – free 

software GNU) 

Nowcast 

The best results were 

obtained with Multi-Layer 

Perceptron (MLP) and 

BFTree ML Techniques. The 

research uses only one 

parameter type. It does not 

demonstrate the use of two 

or more weather variables. 

4.4 

Watershed 

rainfall 

forecasting 

using neuro-

fuzzy 

networks with 

the 

assimilation of 

multi-sensor 

information 

(Chang, et al., 

2014) 

Merging gauge measurements, 

radar, and satellite products 

rainfall sources for rainfall 

forecasting. Using BPNN for bias 

correction of QPESUMS and 

PERSIANN-CCS. GA is used to 

merge precipitation products of 

QPESUMS, PERSIANN-CCS and rain 

gauge sources. ANFIS is then used 

to forecast rainfall using the 

assimilated precipitation product 

as input. 

1-2h 

CC, RMSE, NRMSE, MAE was 

used to evaluate the 

performance of the model. 

Bias correction improved the 

QPESUMS model by 38% and 

PERSIANN-CCS by 4%. The 

methodology used requires 

rainfall gauge measurements, 

radar and satellite derived 

precipitation data. 

4.7 

Flash floods 

forecasting 

without 

rainfalls 

forecasts by 

Flash flood forecasting without 

using rainfall forecast nor previous 

discharge as input but 17 years 

rainfall data and discharge data. 

LM algorithm was used to train 

0-1.5h 

Neural network is able to 

forecast flash flood without 

rainfall forecast nor previous 

discharge information. The 

model needs to be validated 
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recurrent 

neural 

networks. 

Case study on 

the Mialet 

basin 

(Southern 

France) 

(Artigue, et al., 

2011) 

and minimise the mean squared 

error of the multilayer perceptron 

network model.  Nash coefficient, 

PPD, SPPD and time delay between 

the maximum of the peak 

discharge and the forecast was 

used to quantify the quality of the 

forecast. Two models were tested 

and compared; a linear and non-

linear multilayer perceptron model 

against another model with 

the same parameter. 

4.2 

Model-based 

monitoring for 

early warning 

flood 

detection 

(Basha, et al., 

2008) 

Statistical linear regression 

algorithm to predict flash flood. 

Inputs of past flow, air 

temperature and rainfall are 

collected with sensors in real time. 

Modified correlation coefficient, 

the false positive rate of 

prediction, and the false negative 

rate of prediction were used to 

evaluate the algorithm 

performance. 

1-16h 

The algorithm is simple and 

yet yields good accuracy. The 

algorithm uses little 

computation power 

compared hydrology models. 

The prediction algorithm will 

be distributed on the 

computation nodes on the 

WSN. 

4.3 

Merging 

multiple 

precipitation 

sources for 

flash flood 

(Chiang, et al., 

2007) 

The RNN model utilizes gauged 

rainfall and satellite-derived 

rainfall for flash flood forecasting. 

The two rainfall inputs are merged 

using weights in the RNN model. 

The contribution from satellite-

based rainfall to the forecasts is 

limited (5%). 

3h 

An improvement of 2-14% 

has been observed form the 

merged precipitation. 

However, in this setup the 

accuracy of the forecast 

depends greatly on the 

quality of the existing gauges 

data. 

2.1 

 

A Spatially 

distributed 

flash flood 

forecasting 

model 

(Blöschl, et al., 

2007) 

Grid bases of 1 km square with 21 

parameters for each cell. Simulates 

Snow processes, soil moisture and 

hillslope scale routing. 15 minutes 

temporal resolution. Observation-

based extrapolation or nowcast of 

the interpolated precipitation field 

and NWP model prediction are 

weighted together to provide 

better prediction and reduce error 

by 20-30%. Kalman Filter function 

is used to update the model states 

48h 

Robust system capable of 

forecasting flash flood with 

good level of accuracy. 

However, the performance of 

the model hinges on the  

accuracy of the rainfall data, 

and biases in rainfall may 

translate into biases in soil 

moisture and hence 

diminished forecast 

accuracies. 
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variables based on observed 

runoff. 

2.2 
ALERT 

BoM Australia 

Input data are fed into a 

hydrological model to assess the 

magnitude and timing of a flood 

event. Sometimes the likely 

severity of flooding is assessed 

using simple manual guides look-

up tables 

Nowcast 

The system can send warning 

to officials via telephone. 

More advance and robust 

system is now available. 

4.5 

Evaluation of 

Several 

Algorithms in 

Forecasting 

Flood (Wu & 

Chau, 2006) 

Two hybrid models (ANN-GA and 

ANFIS) were evaluated against 

Linear Regression. ANFIS yields 

better results but requires more 

parameters 

24h 

Both ANN-GA and ANFIS 

models got better accuracy 

than LR model but at the cost 

of higher computing power. 

2.3 

Development 

of a European 

flood 

forecasting 

system (De 

Roo, et al., 

2003) 

The system uses MRWFEPS 

forecast weather variables for each 

cell of 40-80 km horizontal 

resolution every 6h for up to 10 

days lead time. DMI-HIRLAM 

model and DWD-LM model are 

used to increase forecast spatial 

and temporal resolution of 

MRWFEPS. The LISFLOOD’s models 

simulates river flow and flooding at 

hourly time steps and 1 km square 

grid resolution and model the 

overbank flows and inundation 

areas. 

72h 

The EFFS system got 

acceptable level of accuracy. 

The model could forecast at 5 

days ahead but failed to 

capture the main body of the 

flood. 

Table 3.6: Flood forecasting/ nowcasting models summary 

 

3.4 Chapter Summary 
Flood and rainfall prediction techniques have been investigated. We notice that in the work of Furquim 

that the best results were obtained with MLP and BFTree ML techniques for flood nowcasting at an 

accuracy of 66% over 3 minutes nowcast. Basha created a WSN and a linear regression prediction 

algorithm. The WSN is low-cost and able to withstand extreme weather conditions. The model 

outperforms a calibrated DMIP model by 3% with an autocorrelation of 1 at 1 hour forecast and decreases 

to 0.0627 at 24 hours. Chiang and Chang have proposed an ANN model to merge and evaluate the 

effectiveness of satellite and radar derived precipitation forecast and gauged data. The proposed models 

have shown better results than satellite and radar precipitation products alone with 2-14% RMSE 
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improvement for Chiang model and 19-25% improvement for Chang model for a lead time of 1 to 3 hours. 

C.L. Wu and K.W. Chau evaluated the ANN-GA and ANFIS against LR for flood forecasting at a lead time of 

24 hours. They conclude that ANFIS model gets the highest accuracy and requires less training time than 

ANN-GA but with more parameters than the other two models. Artigue presented an RNN model, where 

it was noticed that ANN can be used to perform flash flood prediction without rainfall forecast nor 

previous discharge considered. Boukharouba presented an SVR ML model for flash flood forecasting 

without rainfall forecast. Two models were created and evaluated by Nash coefficient and persistence. 

Abdul-Kader compared several A.I training techniques, training. It was noticed that MLP-PSO is the most 

efficient model with least error compared to MLP-LM and RBF. Guesmi proposed a WSN hybrid 

architecture composed of both centralized and distributed model for combined advantages. Hardware 

and software used are expensive and not readily available in Mauritius. 

From the literature review it is noted that there are many techniques to forecast flash floods but little has 

been done on flash flood nowcasting. As flash floods are unexpected weather phenomenon that occurs 

in a short amount of time and is region specific in Mauritius, it is important to be able to use real-time 

data in flash flood risk regions and produce a prediction (nowcast) for a few hours ahead of time. Further 

investigation is needed to find the best approach to effectively nowcast flash floods in Mauritius. Due to 

the nature of environment and weather conditions, and the limited availability of meteorological data for 

Mauritius, WSN can be considered to capture real-time data of rivers and weather variables at a low cost. 

The results of all the Machine Learning techniques reviewed are not directly applicable to the Mauritian 

contexts the input parameters can differ. As such, there is a need to further identify the different 

parameters which can be considered for a Machine Learning Algorithm. 
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Chapter 4 – A Review of Environmental Parameters for Flash Flood 

Nowcasting 
  

4.1 Variables Behind Flash Flood Nowcasting 
To be able to effectively nowcast flash floods, it is very important to gather and use appropriate weather 

variables specific to Mauritius. The table below identifies and maps several parameters and variables 

involved in flood prediction used by the models and frameworks from Chapter 3. The relevance of the 

parameters used by each model is investigated and critical analysed. 

Model 

R
ai

n
fa

ll 

W
at

e
r 

Le
ve

l 

W
at

e
r 

Fl
o

w
 

Te
m

p
er

at
u

re
 

So
il 

M
o

is
tu

re
 

La
n

d
 

To
p

o
lo

gy
 

H
u

m
id

it
y 

W
in

d
 S

p
ee

d
 

Sa
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R
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ar
 

A Spatially 

distributed 

flash flood 

forecasting 

model 

(Blöschl, et 

al., 2007) 

✓    
✓  ✓  ✓      

ALERT 

BoM 

Australia 
✓  ✓          

Developme

nt of a 

European 

flood 

forecasting 

system (De 

Roo, et al., 

2003) 

✓   ✓   
✓  ✓      

Combining 

wireless 

sensor 

networks 

and 

machine 

learning for 

flash flood 

nowcasting 

 ✓          
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(Furquim, 

et al., 2014) 

Model-

based 

monitoring 

for early 

warning 

flood 

detection 

(Basha, et 

al., 2008) 

✓  ✓   ✓  ✓       

Merging 

multiple 

precipitatio

n sources 

for flash 

flood 

(Chiang, et 

al., 2007) 

✓      
✓    ✓  ✓  

Wireless 

Smart 

Sensor 

Networks 

for Real-

Time 

Warning 

System of 

Flash Floods 

and 

Torrents in 

KSA 

(Guesmi, 

2017) 

✓  ✓  ✓  ✓        

Evaluation 

of Several 

Algorithms 

in 

Forecasting 

Flood (Wu 

& Chau, 

2006) 

✓  ✓          
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Watershed 

rainfall 

forecasting 

using 

neuro-fuzzy 

networks 

with the 

assimilation 

of multi-

sensor 

information 

(Chang, et 

al., 2014) 

✓   ✓       
✓  ✓  

Forecasting 

Rainfall 

based on 

Computatio

nal 

Intelligent 

Techniques 

(Abdul-

Kader, et 

al., 2018) 

   

Low 

& 

High 

temp

eratu

re 

  
✓  ✓    

Flash floods 

forecasting 

without 

rainfalls 

forecasts by 

recurrent 

neural 

networks. 

Case study 

on the 

Mialet basin 

(Southern 

France) 

(Artigue, et 

al., 2011) 

✓   ✓         

Flash flood 

forecasting 

using 

Support 

Vector 

✓  ✓          
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Regression: 

An event 

clustering 

based 

approach 

(Boukharou

ba, et al., 

2013) 

Table 4.1: Parameters unit of measure and techniques 

 

4.2 Parameters involved in Flash Flood Forecasting/Nowcasting 
Rainfall 
Rainfall driven floods occur when the soil is no longer able to absorb water (Basha, et al., 2008) and the 

magnitude of the rainfall affect dramatically the water runoff because of the saturated soil moisture 

(Blöschl, et al., 2007). The quality of any flood forecast/nowcast depends heavily on the quality of the 

rainfall input. An efficient wide rain gauge network in the entire flood prone region properly calibrated is 

necessary. Nevertheless, rainfall data alone is not enough to provide proper flood forecast (Yang & Su, 

2015). 

River/Canal water level 
Rainfall and water level are correlated. River water level can be predicted by determining the rainfall 

surface runoff and soil ability to absorb water. Water level data can give an indication for potential risk of 

river or canal overflow, by calculating in real-time the rate in rise of water level together with rainfall data. 

River/Canal water flow 
The velocity or flow rate of water is important to determine the severity of a flash flood event. Water flow 

is dependent on land topology and land slopes (Guesmi, 2017). A high-water velocity can overflow a river 

or canal in a relatively small period of time and the result can be devastating to the surrounding locality. 

Water flow is highly correlated with land slope and rainfall intensity. 

Air temperature 
Air temperature is related to seasonal weather conditions, tornados or blizzard for high and low 

temperatures, respectively (Basha, et al., 2008). In Mauritius, floods and flash floods mainly occur during 

the summer season. Air temperature data can be used as an indication of the season, as well as to assess 

the rate of evaporation, among others and combined in the prediction algorithm. 

Soil moisture 
Soil moisture is highly correlated with rainfall and water level. A prolonged episode of rainfall renders the 

soil saturated and unable to absorb water which causes water accumulation and rainfall runoff causing 

drains and rivers to overflow rapidly resulting in flash floods. Soil moisture can be used estimate river 

level. 

Land topology 
Land topology or land slope can be used to determine the flow direction of surface runoff water and to 

determine water velocity in a river or water canal (Blöschl, et al., 2007). 
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Satellite and Radar 
Satellite and radar are powerful tools when it comes to rainfall forecasting they provide information on 

the formation of clouds and their direction. Chiang and Chang (2007; 2014) used satellite and radar 

derived rainfall sources combined with rain gauges for flash flood forecasting. Wind drift can also be used 

in precipitation estimation by meteorological radar. 

 

4.3 Measuring the Flash Flood Nowcasting Parameters 
While flash floods depend heavily on rainfall quantity and intensity, other correlated parameters such as 

river water level, water flow, temperature, soil moisture, satellite, radar and land topology can be used 

by a model to forecast/nowcast flash floods with greater accuracy.  

A sensor-based flood forecasting/nowcasting model is much simpler than hydrology model which requires 

expensive tools, equipment and trained hydrology personal to operate and interpret data. Machine 

learning and artificial intelligence models can be used to interpret sensed data and provide accurate 

nowcast. 

Parameters 
Unit of 

Measure 

Measuring 

Apparatus 
Sensor Technique 

Rainfall 

Millimetre 

(1mm = 

1L/m2) 

Rain gauge Reed switch 

Water is funnelled into a bucket. 

When the correct amount of water 

is present, a swing activates a reed 

switch. Each swing is registered as 

one count. 

Water level 
Centimetres 

or metre 

Vertical pipe 

with scale 

Air pressure 

sensor 

A hose is connected to the pressure 

sensor and the other end runs in 

the river. As water level rises air 

pressure in the hose rises. Air 

pressure is recorded and converted 

into centimetres. 

Water flow 

Litres/sec or 

Cubic 

metres/sec 

Bucket 

method, 

Float 

method, 

weirs 

Pygmy meter 

A wheel is rotated by water flow 

and the rate of the rotation 

signifies the water velocity. 

Air 

temperature 

Degrees 

Celsius 
Thermometer DHT22 

Digital temperature and air 

humidity sensor. 

Soil 

moisture 
Percentage Soil moisture meter 

Can be measured by electric 

conductivity 
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Land 

topology 

Percentage or 

angle 
Inclinometer 

Accelerometer 

or gyroscope 

Accelerometer: Tilt can be 

measured by this equation θ = sin-1 

(Measured Acceleration / Gravity 

Acceleration). 

Gyroscope is used to measure the 

angular velocity. 

Satellite and 

Radar 
Imagery Satellite and Radar 

Computational 

Satellite: Photos taken by satellite 

Radar: Sending radio pulses and 

listening for return signals to detect 

clouds. 

Table 4.2: Parameters unit of measure and techniques 

 

4.4 Parameters Specific to Mauritius 
Satellite based or radar-based forecasting may not be feasible using a low-cost approach. Also, high 

resolution and real time images are necessary for flood nowcasting. Water flow and flash floods depends 

heavily on rainfall intensity and duration. Rainfall parameters alone cannot be used for prediction as water 

flow is required. The MMS provides rainfall data collected from different stations for every 3 hours. A 

more elaborated set of weather parameters, i.e. (Rainfall-Temperature (Min,Max), Temperature(dry bulb, 

wet bulb, dew point), relative humidity, wind speed, sunshine radiation, evaporation, atmospheric 

pressure, vapour pressure), are available from only two stations, Vacoas and Plaisance station. The price 

for one parameter is Rs1500 per month or Rs18000 per year. Using data available from MMS makes is it 

quite complex to determine possible events of flash floods, especially that region specific data is coarse 

grained. Other sources of data have been identified and presented in Table 4.3. Some of the sources uses 

data from MMS. 
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Link Description Parameters Price 

Mauritius 

Meteorological 

Services 

 

50 years of climate data 

distributed spatially 

over the island stations. 

Rainfall-Temperature (Min,Max), 

Temperature(dry bulb, wet bulb, 

due point), relative humidity, wind 

speed, sunshine radiation, 

evaporation, atmospheric 

pressure, vapour pressure 

Rs1500/M 

per 

parameter 

Or 

Rs18000/Y 

per 

parameter 

meteoblue.com 

 

30 years hourly weather 

data for Mauritius. 

 

Available in CVS format. 

Temperature, Relative humidity, 

Precipitation amount, Wind speed 

and direction 

Last 2 week 

free. 

$115, 30+ 

years of 

historical 

data 

World 

Meteorological 

Organization 

 

6 days MMS daily 

forecast for Vacoas, 

Port-Louis, Plaisance. 

 

Available in JSON 

format. 

 

Weather (e.g. Partly cloudy, 

isolated Showers, etc), Minimum 

temperature, Maximum 

temperature. 

Free 

wunderground.com 

 

Hourly & daily data for 4 

stations. 

 

Historical data view 

only. 

Temperature (mean, max, min), 

dew point, humidity (avg, max, 

min), precipitation, sea level 

pressure, max wind & gust speed, 

visibility 

n/a 

World Weather 

Online 

 

Hourly data. 

Historical data in xml 

format. 

All data are forecast 

only (not actual) 

Temperature (mean, max, min), 

dew point, humidity (avg, max, 

min), precipitation, sea level 

pressure, max wind & gust speed, 

visibility 

Trial 500 

calls free. 

$105 

monthly 500 

calls per day. 

Table 4.3: Parameters Available in Mauritius 

 

 

http://metservice.intnet.mu/climate-services/climate-info-and-data.php
http://metservice.intnet.mu/climate-services/climate-info-and-data.php
http://metservice.intnet.mu/climate-services/climate-info-and-data.php
https://www.meteoblue.com/en/weather/archive/export/mauritius_mauritius_934293?daterange=2018-06-02+to+2018-06-15&params=&params%5B%5D=11%3B2+m+above+gnd&params%5B%5D=661%3Bsfc&params%5B%5D=32%3B10+m+above+gnd%3B31%3B10+m+above+gnd&utc_offset=4&aggregation=hourly&temperatureunit=CELSIUS&windspeedunit=KILOMETER_PER_HOUR
http://worldweather.wmo.int/en/home.html
http://worldweather.wmo.int/en/home.html
http://worldweather.wmo.int/en/home.html
https://www.wunderground.com/weather/mu/quatre-bornes/IPLAINEW2
https://www.worldweatheronline.com/port-louis-weather/port-louis/mu.aspx
https://www.worldweatheronline.com/port-louis-weather/port-louis/mu.aspx
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Water level from rivers are monitored aby another institution, The Water Resources Unit (WRU). It has 

been established in May 1993 and is responsible for the assessment, development, management and 

conservation of water resources in the Republic of Mauritius. The WRU collects monthly water flow data 

for several rivers across the island. From the list data available from WRU, it has been noted water flow is 

available in readable format for very few rivers and only for a period year from 2006 to 2010. 

 

4.5 Comparative Analysis of Neural Network based Machine Learning Techniques  

4.5.1 Introduction 
As per our literature review, various ML techniques have been used in different contexts. Given the case 

of Mauritius, we first investigate different Neural Network techniques through experimentation. The 

main aim is to define which techniques are more appropriate as well as the attributes of the data 

required for effective nowcasting.  

Artificial Neural Network (ANN) 

ANNs are machine learning algorithms developed to teach computers to recognize patterns and think like 

humans. An ANN emulates the human brain consisting of an input layer, hidden layers and an output 

layer. Each layer consists of nodes (neurons) connected by weighted edges (synapses). 

Feed-forward propagation is the process by which data are fed in from input to output. Back propagation 

is the learning process by which the output error of the network is propagated backwards through the 

network and weights are adjusted. 

Deep Neural Network (DNN) 

While a simple ANN have 2-3 layers, a DNN or MLP can have several hidden layers use to compute 

more complex solutions. 

Dropout 

A common problem that occurs in neural network training is overfitting (Ashiquzzaman, et al., 

2018). This happens when the network learns to fit too closely the data points and pick up noise 

in the training data. As a result, performance is negatively impacted as the model has not 

generalized enough to fit new data. 

One way prevent overfitting is adding dropout in the network architecture. Dropout refers to 

ignoring a percentage of nodes (neurons) at random in one or many layers. Dropped nodes is not 

considered during a forward and backward pass. By doing so nodes are hindered from co-adapting 

too well and all nodes are given the chance to learn equally. This in turn reduces the possibility of 

overfitting (Ashiquzzaman, et al., 2018). 

Kernel Regularization 

Another way to reduce overfitting is to implement a kernel regularization technique by reducing 

the weights complexity. It implies filtering out the weight of false or fake features. Thus, there is 

an increase in accuracy mainly based on the extraction of the appropriate (good) features. 

Early Stopping 
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It is used to avoid overfitting. Early stopping provides guidance as to how many iterations can be 

run before the model begins to over-fit. 

Recurrent Neural Network (RNN) 

RNNs are mostly used for time series dataset where the previous, actual and future data inputs are related 

to each other. RNN can do better predictions by taking previous inputs sequences into account. RNN does 

this by persisting the previous information in the network with a loop. 

Long-Short Term Memory (LSTM) network is an extension for RNN which enables RNN to recall previous 

inputs over a long period of time. 

Genetic Algorithm (GA) 

GAs are used to optimize any type of ANN to produce the best results out of them. They are inspired by 

the natural selection process where the fittest individuals are selected for reproduction in order to 

produce offspring of the next generation. The network parameters for the offspring are inherited from 

the fittest parent network in the previous generation. 

4.5.2 Experiments 
To access the effectiveness of using WSN to capture real-time data for flash flood nowcasting. MMS 

rainfall data and WRU water flow data for the period of year 2006-2010 are used to generate synthetic 

rainfall and water flow data to simulate an operational WSN. AS per the NDRRMC identified Riviere du 

Poste to have flooded during the 2013 episode. Therefore, data for the same river has been combined 

with data from the MMS, and water flow peaks from year 2006 to 2010 have been extracted. A 389 days’ 

worth of water flow data has been constructed. In order to use the water flow data in machine learning 

regression, we need to pre-process the daily data in to 3-hourly data to match MMS rainfall data intervals.  

Two experiments has to be carried out, based on regression and classification. The following steps for the 

first experiment are as follows: 1. To assess MMS data necessity, synthetic rainfall data based on the water 

flow levels are created and evaluated. 2. To simulate a WSN setup to increase predictions accuracy. 

Rainfall and water flow data are created that simulates the river level upstream. 3. Arrange the upstream 

data by moving the records 3 hour earlier to the original water flow. The figure below shows how the WSN 

data collection is simulated. Upstream collected data together with downstream data should be able to 

predict next 3-hours downstream data. Figure below shows sensors upstream and downstream at flooded 

area. 

The second experiment consists of: 1. arranging the pre-processed 3-hourly water flow data in sequential. 

2. Labelling the data form 0 High decrease to 4 High increase for classification in the same format as 

Gfurquim approach. 
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Figure 4.1: Sensors Placed Upstream and Downstream 

4.5.3 Experimental Setup 
We developed and test our models using various Python packages, see appendix A for installation 

procedures. The table below shows the three main Python packages. 

Package/ Description Use 

Scikit-Learn/ 

Free ML library, data mining and analysis tools for 
Python. 

Read and split dataset for training and testing, 

Scale values, 

Design and run ML algorithms, 

Calculate accuracy. 

TensorFlow/ 

Open source ML framework such as neural 
network. Can use GPU computational power for 
faster computations. 

Design AI models, 

Train and run AI models, 

Calculate accuracy. 

Keras/  

High-level neural network API, written in python 
running on top of TensorFlow. 

Allows for easy and fast prototyping, 

Run on CPU and GPU. 

Table 4.4: Python Packages Used 

We ran our experiments on the machine listed in Table 4.. 

Type Laptop 

CPU Intel Core i7-7700HQ @ 3.80 GHz with 4 cores and 4 threads 

GPU/ MEM NVIDIA GTX 1050, 768 CUDA cores @ 1645 MHz/ 4GB GDDR5 

RAM 8GB DDR4 

Storage SSD 

Table 4.5: Experiments Hardware Configuration   
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4.5.4 Data Preparation 
Initial data 

Data from WRU: Riviere du Poste 

Data period daily water flow (Total records: 389): 

Feb-Apr 2006 (89 days) 

Jan-Mar 2007 (90 days) 

Feb-May 2008 (120 days) 

Jan-Mar 2010 (90 days) 

 

Figure 4.2: WRU Water Flow Data: 

Convert to 3-hourly data 

Data is converted from daily to 3-hourly by splitting each record into 8 and adding 0-15% to the number 

at random. 

Calculation: Next – previous / by 8 + a random percentage of 0-15% to the number to make it less-linear.  

Total records: 2717 (or hours of data) 

4.5.5 Experiment 1 – Regression 
Create a synthetic rainfall dataset 

The 3-hourly flow data us converted to rainfall data.  

Calculation: Dataset flow peak / 200mm * flow = rain. Rain + random -15% to 15%. 
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Figure 4.3: Water Flow and Rainfall Data 

 

Create synthetic flow and rainfall dataset 

Create an additional flow and rainfall dataset to simulate flow and rainfall at another point of the river 

upstream. 

Calculation: Divide all rainfall and flow by 2 and add -20 to 20% of the number to them randomly. 

Add lag by moving all new records 3 steps up. 

 

Figure 4.4: Synthetic data 

4.5.6 Result 
ANN RMSE: 0.137 

RNN RMSE: 0.146  

Records 
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4.5.7 Experiment 2 – Classification 
Using the same 3-houly flow data as above. 

The data is then formatted in Gfurquim dataset format. 

 

 

 

Figure 4.5: Water Flow Data in Gfurquim format 

 

The data is then converted to a sequence of flow data: 

flow < -2 = class 0 (High decrease) 

flow < -0.5 = class 1 (Low decrease) 

flow >-0.5 and flow < 0.5 = class 2 (stable) 

flow >0.5 = class 3 (Low increase) 

flow >=2 = class 4 (High increase) 

 

Results 

 

Figure 4.6: Results Gfurquim format 

Records 
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Figure 4.7: Results Confusion Matrix 

 

4.6 Chapter Summary 
This chapter firstly provides an overview of existing forecasting methods and techniques as well as their 

parameters. They have been discussed in the Mauritian context and it is to be noted that none of the 

techniques have been applied in the same conditions. Most of the parameters used the techniques are 

considered as environmental variables that are essential for flood prediction. Also, combining parameters 

converge to more accurate predictions. Secondly, in an attempt to better understand the application of 

each model, a series of preliminary experiments have been conducted so as to understand their 

differences and assess their current applicability. It has not yet been decided which Machine Learning 

algorithm and or technique is most suitable, but two of them have been earmarked, the Artificial Neural 

Network and the Recurrent Neural Network. Further investigations in the form of experiments are 

required, and will be considered and described in the evaluation section (chapter 7). 
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Chapter 5 - Design of a Low-Cost Flash Flood Nowcasting Solution 

5.1 Proposed Solution 
In order to nowcast flash-flood in Mauritius, a solution based on two main components is being proposed. 

The first component is the prediction engine based on Recurrent Neural Network (RNN) ML technique 

and the second component is Wireless Sensor Networks (WSN) which makes use of sensors to monitor 

rivers for water level and rainfall as shown in Figure 5.1. The squared orange rectangles 1,2,3 are groups 

of sensors that take measurements of water level and rainfall. As sensors are located in or near rivers, the 

risk of getting damaged is high. Therefore, each group consists of three sets of water level and rainfall 

sensors for redundancy purposes. When a sensor is offline or sends fake data to the base station, the 

system switches to another sensor. The local nodes station represented in yellow triangles are equipped 

with both short-range and long-range communication modules. The sensor nodes send data (water flow 

and rainfall) via the short distance module to its corresponding local nodes.  The data is then relayed to 

the base station (green circle) via long distance module. The base station is a computer with enough 

computing power for data manipulation and needs an internet connection. It analyses data from sensors 

and detects if the sensors are working correctly, prepare error logs, and prepare and compress collected 

data. All data are then sent to a web server where the prediction and user intervention takes place. The 

proposed WSN solution is reliable in terms of redundancy as if a sensor node fails the system can continue 

to function. Noise can also be filtered out from the collected data. Collecting data from the river upstream 

proved to increase the prediction accuracy and the sum of node 1 and 2 can be used as node 3 data labels 

during training. The downside of this system is that it is costlier and complex in terms of infrastructures 

and prediction. 

 

Figure 5.1: WSN Setup 
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5.2 Architecture of the Proposed Solution 
This section describes in detail how the system is designed and how each component of the system works 

and interacts with each other. The system’s logical architecture and hardware architecture are presented. 

5.2.1 System Architecture 
The system architecture consists of 3 major parts: WSN System, Software/Machine Learning and User 

interface. These parts are described as follows: 

• WSN 

o The WSN is entirely located on a river site. It consists of the WSN system which collects 

river data continuously and send it to a server through an internet connection on a fix 

interval or on user demand. 

• Software/ Machine Learning Engine 

o It consists of a server that collects data from the WSN, performs computations and makes 

predictions. It also contains a set of functions that can be called by the User Interface to 

interact with the WSN system. 

• User Interface 

o The platform by which the user communicates with the system. The web application is 

the admin interface only where the user has full access to the system to view predictions, 

raw data, make predictions and is able to manage the power state of sensors. The mobile 

application is designed for a normal user, where the user can view the river data and 

predictions for the upcoming hours. 

 

Figure 5.2: System Architecture 
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5.2.2 Logical Architecture for WSN 
The Local Nodes Station and the Sensor Nodes have the same micro-controller, an Arduino Uno (Nano, 

Uno, Or Mega). The Sensor Nodes sense and collect data from weather sensors and power unit status. 

The collected data is then sent to its corresponding Local Nodes Station where the data is then relayed to 

a central Base Station. The Base Station is a micro-processor, a Raspberry PI3, capable of handling high 

workloads is used analyse and sort collected from all Local Nodes Stations and Sensor Nodes. The Base 

Station looks for faults or anomalies in the collected data and the data is cleansed before uploading it to 

the Web Server by the GSM Module. A report of faults is also uploaded to the web server where a decision 

about nodes management can be taken. Figure 5.3 and Figure 5.4 below gives an overview of the WSN 

system. 

 

Figure 5.3: WSN Logical Architecture 

Figure 5.4: WSN Architecture 
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5.3 Proposed Flash Flood Nowcasting Approach 
In this section, a comprehensive description of the proposed approach through which flash flood is 

nowcast. In section 4.5, ML experiments showed that better predictions are obtained when using 

collected water flow and rainfall data from two points in the river; the flooded area and the river 

upstream. The WSN should be able to withstand extreme weather conditions, using redundant sensors to 

ensure continuous data collection when primary sensors are down and able to monitor and manage 

sensors and power efficiently, and send collected data, error logs, and sensors data logs to the web server 

for processing. The web server processes all data and makes predictions where the administrators and 

users can access the results and manage system components. After the collected data are processed, the 

data are fed in the regression algorithm. RNN is used to make predictions to obtain water flow level in the 

next hour. The use of Genetic Algorithm (GA) to optimise RNN configuration parameters will be further 

considered for improving the prediction accuracy of the model. 

5.4 Requirement Specification 
In this section, functional and non-functional requirements of the proposed system are defined. 

Functional requirements are the main tasks that the system should be able to perform and functions that 

are provided to the user. Non-functional requirements are constraints on the functions provided by the 

systems in terms of security, reliability, performance and usability. 

5.4.1 Functional Requirement 
ID: The identification number of the functional requirements  

Description: The functional requirement.  

Explanation: An explanation of the requirement, and its purpose whenever needed.  

The functional requirements of the application are outlined in Table  

ID DESCRIPTION EXPLANATION 

F1 Users must be able to view real-
time data 

Normal users should be able to view processed real 
time data. Admin users should be able to view both 
raw and processed real-time data (data that are being 
collected) from each node and station. 

F2 Users must be able to view flash 
flood-related predictions 

Normal users (mobile version) should be able to view 
predictions for the next 3, 6, 9 hours real time. Admin 
users should be able to view predictions with previous 
predictions trends. 

F3 Admin users must be able to 
download the latest raw collected 
data 

As the WSN system transmits only processed data by 
default, there should be an option where the user can 
download the raw dataset 

F4 Automated predictions After each 5 minutes the system uses the collected 
data and make predictions for the following 3, 6, 9 
hours 

F5 Manual predictions Admin users with a click of a button should be able to 
make predictions instantaneously 
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F6 The system must monitor sensors 
and log sensors activities 

The system should be able to monitor all sensors 
activities including data transmission and power state 

F7 The system must be able to 
detect errors in sensing nodes 

The system has to collect data from sensors and 
redundant sensors and analyse the data to detect 
anomalies in the collected data 

F8 The system must provide WSN 
components status 

Admin users should be able to see connected sensors 
status; online, warning, offline. More details of the 
sensor’s status can be found in the Local Nodes 
Station log file  

F9 Power monitoring The system should be able to calculate power usage, 
battery remaining current capacity and solar time. The 
system should also provide notification to the admin if 
a station is about to go offline in case of insufficient 
solar charging rate. 

F10 Sensing nodes power control Admin should be able to turn off redundant sensors in 
case of low battery alert to preserve power and 
damaged sensors 

F11 The web and mobile version 
should have a search bar 

The search bar will be used to search for river 
monitoring and predictions information. 

Table 5.1: Functional Requirements 

5.4.2 Non-functional Requirements 
ID: The identification number of the non-functional requirement  

Explanation: An explanation of the requirement, and its purpose whenever needed.  

The functional requirements of the application are outlined in Table 2.1 

ID DESCRIPTION EXPLANATION 

NF1 Scalability The system should be designed in a way where the 
user can add new sensors and stations for other 
regions and able to perform every task separately for 
each region 

NF2 Security The web admin user should be prompted with a 
username and password to prevent unauthorised 
access 

NF3 Performance Both the WSN and web components should be very 
responsive. The user should not wait long to query 
critical information and operations 

NF4 Usability The screens should be designed in a way where the 
user can view data and perform operations quickly. 
The system should also provide useful information to 
the user in case of an error occurred in the system. 

Table 4: Non-functional Requirements 
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5.5 Use Case Diagram and Scenarios 
Figure 5.5 below represents a use case diagram outlining the interaction and relationship between the 

system and actors to achieve the required goal. The actors are individuals and sub-systems involved with 

the system defined according to their roles. In this case, the actors are represented by the users, web 

server and the WSN system. 

 

 

  

Figure 5.5: Use Case Diagram 
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5.6 Class Diagram 
Computational System and User System Class Diagram 

Figure 5.6: Class Diagram 
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5.7 Database Design 
The system will be using a local database at the WSN system base station that stores collected data and 

sensors logs. The web server is also using the same local database to perform predictions and reduce 

latency lag from the WSN system. The ERD Figure 5.7 shows tables, attributes and relationship of the 

tables. 

 

  

Figure 5.7: Database ERD 
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5.8 User Interface Design 
In this section, the structure of the applications and layouts of the mobile application and web interface 

has been designed and explained. 

5.8.1 Mobile Interface (User) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Search button. User can 

search data and forecast 

for a specific river 

Provide live collected rainfall 

and waterflow readings to 

the user 

Prediction for 3, 6, and 9 

hours for waterflow and 

the river status 

The System will provide a 

message about the river 

whether the river is stable, 

risk of flooding and actual 

flooding.  

Providing another river 

forecast. User scroll down 

to see more rivers forecast 

Figure 5.8: Mobile Interface-main 
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5.8.2 Web Interface (Admin) 
In the web interface, the user has full access to the system. The search bar at the left top is used to search 

for a river system implementation, which in this case of the design is Riviere du Poste. Below the search 

bar is the selected river sensors controls. LS_1 stands for Local Nodes Station number 1, the status 

indicates whether the nodes are functional, offline or warning if a problem occurred and requires user 

intervention. When the user clicks on the arrow a tab expands revealing controls for the sensors. The 

green dot indicates that the sensor is working normally, a yellow dot indicates the sensor is possibly 

damaged and transmitting false and bogus data, and a red dot indicates the sensor is not connected or 

data is not received. The view log provides details of sensors; online time, errors and user intervention.  

In the middle of the screen, the top line shows real time data for each Local Nodes Station. The below line 

chart shows water flow predictions for 3h, 6h and 9h at the flooded area. To the right of the screen, the 

logs button shows the whole system log information, the second button pulls the raw database from the 

WSN processing component (raspberry pi). The third button when click makes an instant prediction with 

the latest collected data. 

 

5.9 Chapter Summary 
The system architecture follows a component-based approach consisting of a WSN System for the 

collection of data, which is fed into the Machine Learning Engine, which must be trained to predict 

possible occurrences of flash floods. Users can see the evolution and prediction of both the web and 

mobile interface. 

  

Figure 5.9: Web Interface-main 
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Chapter 6 – Implementation and Testing  
Following the design phase, the implementation of the main components of the system are presented in 

this chapter. The implementation is described in three main sections: firstly, the Wireless Sensor Network, 

followed by the Machine Learning prediction Engine and finally the user interface application. Following 

the implementation, each component has been tested (with reasonable assumptions where necessary). 

The test results are also presented in this chapter. 

 

6.1 Wireless Sensor Network Prototype 
The WSN prototype consists of the sensor nodes connected to the Local Station. Each local station is 

further connected to the Base station for onward collection of information collected by the sensors. For 

a good and reliable WSN system, the sensors and other components should be functional, durable and 

low cost that is easily replaceable in case of damaged devices. The figure below shows how the different 

components are connected to each other. 

  

 

 

 

 

Figure 6.1: Proposed WSN Implementation Architecture 
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The main components of the WSN are described below: 

Power Source: Each node may house their own power unit. The power unit consists of a battery pack and 

a solar panel. The solar panel will be used to charge the battery pack to keep the nodes functioning all the 

time. The battery should be large enough to provide enough current to the connected node and provide 

at least 1 to 2 days of power if ever the solar panel fails or didn’t have enough sunlight during bad weather 

conditions. 

Base Station: Highlighted in the blue rectangle, the base station is responsible for receiving data from 

local station nodes, process it and send the data to a web server over the internet. A Raspberry PI3 micro-

processor is used as the main of the base station due to its credit card size, high performance and low 

power consumption of 1.2W. When connected to the internet the Raspberry PI is easily monitored and 

programmed wirelessly. Data gathered from local nodes can be processed and compressed to reduce the 

payload when uploading to the web server.  

Local Nodes Station: Highlighted in orange rectangle, this node is responsible for relaying information 

from one or many groups of sensing nodes to the base station by using long range communication module. 

It consists of an Arduino UNO as mainboard and two communication modules, a long range to send data 

to the base station and a short range to collect data from sensing nodes. There can be many local nodes 

stations. 

Sensor Nodes: Highlighted in green rectangle, powers and collects data from temperature, rain gauge and 

pressure sensor. An Arduino is used as baseboard. The Arduino collects sensed data and sends it to the 

local nodes station. The sensor nodes can be powered by the same power source as the local nodes station 

or by a dedicated power source. 

Communication: SIM900 module is used to send data to the web server over the internet. It uses mobile 

GSM signal 850/900/1800/1900 MHz GPRS/GSM to connect to the internet. The SIM900 module 

consumes 1W to 2W while transmitting and 1.5mA in sleep mode. HC-12 module is used to make long 

range communication between the local nodes’ stations to the base station. The module operates in the 

433MHz band with a max range of 600m to 1800m. The transmitting power is 0.79 to 100mW. The 

NRF24L01 modules are used to send weather data from the sensing nodes to their respective local nodes 

station. The module operates in the 2.4GHz band with a range of 1000m line-of-sight and 270m in the 

forest region. The transmitting power is about 0.79-100mW. 

 

6.1.1 System Cost 
The total cost of a single unit set excluding infrastructure is around 303.18 USD (around Rs 10,611). The 

cost includes a single sensor node component estimated at around 139.20 USD per unit and in a 

configuration of redundancy, the costs is around 417.60 USD, to which the power source of 38.96 USD is 

required. These set of sensor nodes are further connected to a local station estimated at 93.30 USD 

(including the cost of a power source). Sub cost of each sensor node and its local station are therefore 

549.86 USD (around Rs 19,245). Depending on the architecture, length of the rivers and the number of 

points which measurements are needed, the cost of the system will increase, as more sensors nodes and 

local station nodes will be required. Detailed costing for each single unit of the WSN is further presented. 
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BASE STATION 

link Hardware Description Use Price 

Raspberry 

Pi3B 

 

Raspberry Pi 3B 

Low cost, credit-card 

sized computer. Can 

connect to the internet, 

do complex 

computation. Have 

sensors I/O ports.  

Acts as the network 

coordinator, responsible 

for configuring all 

distributed nodes, 

collecting measured data 

from all of them and 

sending the data to an 

online server. 

$42.75 

433Mhz 

HC-12 

 

HC-12 Wireless 

Serial Port Module 

433MHz band. 

Transmitting power: 

0.79-100mW. 

Max range: 600-1800m 

Transfer data from 1 

nodes to another close 

or long range in peer-to-

peer. 
 

$14.20 

GSM 

module 

 

SIM900 

850/900/1800/1900 

MHz GPRS/GSM 

Class 4 (2 W @ 850 / 

900 MHz) 

Class 1 (1 W @ 1800 / 

1900MHz) 

Low power consumption 

- 1.5mA(sleep mode) 

Embedded TCP/UDP 

stack - allows you to 

upload data to a web 

server. 

Can be used to allow 

communication between 

very far apart nodes. 

Upload sensed data to 

server. 

$13.70 

TOTAL    $70.65 

Table 6.15: Estimated Cost of Base Station 

LOCAL STATION NODE 

link Hardware Description Use Price 

Arduino 

MEGA 

 

Arduino MEGA 

Microcontroller (base 

board) 

Have more I/O ports 

than Arduino UNO 

Operate sensors I/O. Do basic 

computation. 1 for each 

sensors’ nodes 

$24.99 

433Mhz 

HC-12 

 

HC-12 Wireless 

Serial Port Module 

433MHz band. 

Transmitting power: 

0.79-100mW. 

Max range: 600-

1800m 

Can be used to transfer data 

from 1 nodes to another close 

or long range. Provides and 

peer-to-peer communication. 
 

$14.20 

https://www.ebay.com/itm/Raspberry-Pi-3-Model-B-Quad-Core-1-2GHz-64bit-CPU-1GB-RAM-WiFi-Bluetooth-4-1/141136387726?epid=1665704670&hash=item20dc625e8e:g:WkMAAOSwBnVW-foz
https://www.ebay.com/itm/Raspberry-Pi-3-Model-B-Quad-Core-1-2GHz-64bit-CPU-1GB-RAM-WiFi-Bluetooth-4-1/141136387726?epid=1665704670&hash=item20dc625e8e:g:WkMAAOSwBnVW-foz
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
https://www.ebay.com/itm/SIM900-850-900-1800-1900-MHz-GPRS-GSM-Development-Board-Module-Kit-For-Arduino/263106376867?hash=item3d425cb4a3:g:wJMAAOSwzXBZhuns
https://www.ebay.com/itm/SIM900-850-900-1800-1900-MHz-GPRS-GSM-Development-Board-Module-Kit-For-Arduino/263106376867?hash=item3d425cb4a3:g:wJMAAOSwzXBZhuns
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
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2.4G 

Wireless 

Transceiver 

module 

 

NRF24L01+PA+LNA 

SMA Antenna 

Wireless 

Transceiver module 

2.4GHz band 

frequency. Max 

Current: 115mA. 

Range: 1000m line-

of-sight, 270m in 

forest. 

Can be used to transfer data 

from 1 nodes to another. 

Provides and peer-to-peer 

communication. 

$15.18 

TOTAL    $54.37 

Table 6.2: Estimated Cost of Base Stations 

 

SENSOR NODE 

link Hardware Description Use Price 

Arduino 

MEGA 

 

Arduino MEGA 

Microcontroller 

(base board) 

Have more I/O 

ports than Arduino 

UNO 

Operate sensors I/O. Do 

basic computation. 1 for 

each sensors’ nodes 

$24.99 

2.4G 

Wireless 

Transceiver 

module 

 

NRF24L01+PA+LNA 

SMA Antenna 

Wireless 

Transceiver module 

2.4GHz band 

frequency. Max 

Current: 115mA. 

Range: 1000m line-

of-sight, 270m in 

forest. 

Can be used to transfer 

data from 1 nodes to 

another. Provides and 

peer-to-peer 

communication. 

$15.18 

Pressure 

sensor 

 

Gravity: Analog 

Water Pressure 

Sensor 

Water pressure is 

converted into water 

level. 

Measure river water level $38.70 

DHT22 

 
DHT22 

Temperature and 

Humidity Sensor 

Accuracy 

resolution:0.1. 

Humidity range:0-

100%RH. 

Temperature range:-

40~80℃. 

Humidity 

measurement 

precision:±2%RH. 

Temperature and 

Humidity 
$9.48 

https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.dfrobot.com/product-1675.html
https://www.dfrobot.com/product-1675.html
https://www.ebay.com/itm/1pcs-DHT22-AM2302-Digital-Temperature-And-Humidity-Sensor-Replace-SHT15/171907229178?hash=item28067825fa:g:U5wAAOSw8nxbA-Ti
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Temperature 

measurement 

precision:±0.5℃ 

WS-9004U 

Wireless 

Rain Center  

WS-9004U Wireless 

Rain Center wth 

Self-Emptying Rain 

Bucket 

Wireless Raingauge. 

Transmission range 

330 feet and the 

display unit updates 

every 4.5 seconds 

Rain Gauge $50.85 

TOTAL    $139.20 

Table 6.3: Estimated Cost of Sensor Nodes 

 

link Hardware Description Use Price 

Solar Cell 
Monocrystalline 

Solar cell 

2 Watts peak output at 

6 Volts. Monocrystalline 

cells 

Power source $29.00 

Rechargeable 

Battery 

18650 2400mAh 

3.7V Li-ion 

Rechargeable 

Battery 

Battery provides power 

to the board and 

sensors 

Power source $4.95 

Charging 

Module 

TP4056 5V 1A 

Lithium Battery 

Charging Module 

Link between the solar 

cell and battery 
Power source $1.80 

Voltage 

booster 

5V Step-Up 

Breakout - 

NCP1402 

Accept voltage inputs 

between 1 and 4 Volts 

and output a constant, 

low ripple 5V output 

capable of sourcing up 

to 200 mA. 

Power source $3.21 

TOTAL    $38.96 

Table 6: Estimated Cost of Power Source 

 

6.1.2 WSN System Implementation Challenges 
Fixing WSN nodes on existing rivers and/or canals requires specific metal or concrete support 

infrastructures to securely hold the devices. The WSN should also be able to capture real flash flood 

occurrences and get enough data to train the model. Given the time frame and scope of the study, getting 

permissions and building the necessary support infrastructure for the WSN nodes was not considered. 

Therefore, not much resources have been allocated to this activity and it has been decided that laboratory 

simulation techniques will be used instead. 

https://www.ebay.com/itm/La-Crosse-Technology-WS-9004U-Wireless-Rain-Center-wth-Self-Emptying-Rain-Bucket/153646624020?epid=1000178200&hash=item23c60d6d14:g:IV8AAOSwXXNdgUVu
https://www.ebay.com/itm/La-Crosse-Technology-WS-9004U-Wireless-Rain-Center-wth-Self-Emptying-Rain-Bucket/153646624020?epid=1000178200&hash=item23c60d6d14:g:IV8AAOSwXXNdgUVu
https://www.ebay.com/itm/La-Crosse-Technology-WS-9004U-Wireless-Rain-Center-wth-Self-Emptying-Rain-Bucket/153646624020?epid=1000178200&hash=item23c60d6d14:g:IV8AAOSwXXNdgUVu
https://www.amazon.com/Voltaic-Systems-Performance-Monocrystalline-Scratch-Resistant/dp/B06Y1TYXP3/ref=sr_1_4?keywords=solar+cell+for+arduino+water+proof&qid=1576029528&sr=8-4
https://www.gearbest.com/chargers-batteries/pp_43032.html?lkid=11392316
https://www.gearbest.com/chargers-batteries/pp_43032.html?lkid=11392316
https://www.gearbest.com/other-accessories/pp_248278.html?lkid=11331259
https://www.gearbest.com/other-accessories/pp_248278.html?lkid=11331259
https://www.amazon.com/Solu-Control-0-9v-5v-Step-up-Booster/dp/B00V9YB59Q/ref=sr_1_7?keywords=voltage+booster+module+arduino&qid=1576030191&sr=8-7
https://www.amazon.com/Solu-Control-0-9v-5v-Step-up-Booster/dp/B00V9YB59Q/ref=sr_1_7?keywords=voltage+booster+module+arduino&qid=1576030191&sr=8-7
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6.1.3 WSN Prototype 
The goal of this section is to demonstrate the connectivity capabilities of the WSN network and test the 

hardware used on a small-scale prototype based approach. The water flow and rainfall sensors are 

replaced with temperature and humidity sensors to simulate live data being transmitted to nodes and 

base stations. The figure below shows a picture of the actual test setup. 

 

 

 

Figure 6.2: WSN Setup: Main Components 

 

 

Figure 6.2, the highlighted blue rectangle is the base station, is responsible for receiving data from local 

station nodes. The Highlighted orange rectangle relays from the sensing nodes to the base station using 

wireless long-range module. The components in the highlighted green rectangle collect environmental 

data and send the data to the local node station by high frequency low range wireless module. (Referring 

to section 5.2.2, which describes the WSN architecture). 
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6.2 Machine Learning Engine 
The Machine Learning Engine can be considered as a core component for the automatic prediction of flash 

flood occurrences. The Figure below describes our approach, where the data is received from the WSN 

System. The Machine Learning Engine is implemented in Python and follows a modular approach. The 

Machine Learning architecture used is called Recurrent Neural Networks - Long ShortTerm Memory (RNN-

LSTM). The same will be further optimised for better forecast accuracy. 

 

 

Figure 6.3: Machine Learning Component 

 

To be able to build a neural network the following python library are used: 

• Scikit-Learn 

o Import and split dataset into train and test set. 

o Scales values 

o Calculate model accuracy 

• TensorFlow 

o Build a neural network/ Create a model 

o Train and run prediction for a model 

• Keras 

o A high-level API running on top of TensorFlow to facilitate creation of models 

 

RNN is a class of artificial neural networks where the connection between nodes form a directed graph 

along a temporal sequence. Unlike ANN, RNN uses their internal state memory for processing sequences. 

LSTM, is an RNN architecture with feedback connections, which enables it to perform or compute anything 

that a Turing machine can. A single LSTM unit is composed of a cell, an input gate, an output gate and a 

forget gate, which the cell uses to remember values for a defined amount of time. The gates control the 

flow of information in and out of the LSTM cell. LSTM addresses the problem of training over long 

sequences of data and retaining memory. Hence in flash flood prediction the model should retain previous 

hours or days weather conditions to make a prediction. 
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Implementation of RNN-LSTM 

 

Data preparation 

Importing the dataset and scale all values between 0 and 1. 

dataset = pd.read_csv('flowrain1hMultiRandomLag1hv2.2.csv') 

values = dataset.values 

values = values.astype('float32') 

 

scaler = MinMaxScaler(feature_range=(0, 1)) 

values = scaler.fit_transform(values) 
 

 

Specifying the number of lag hours (3 hours of previous data) and the number of features of the dataset. 

And convert the sequential dataset into supervised learning RNN input format. 

# specify the number of lag hours 

n_hours = 3 

n_features = 4 

# frame as supervised learning 

reframed = series_to_supervised(values, n_hours, 3) 
 

 

Splitting the dataset into train and test sets. 

# split into input and outputs 

n_obs = n_hours * n_features 

train_X, train_y = train[:, :n_obs], train[:, n_features+10] 

test_X, test_y = test[:, :n_obs], test[:, n_features+10] 

 

train_X = train_X.reshape((train_X.shape[0], n_hours, n_features)) 

test_X = test_X.reshape((test_X.shape[0], n_hours, n_features)) 
 

Model Architecture 

Creation of the model. The first hidden layer consists of 32 LSTM nodes and Selu activation function, 

followed by a dropout of 10%, followed by another set of 32 LSTM and 10% dropout. The node in the last 

layer is the output node with a linear activation function. The model is set to user Adam learning rate of 

0.0001 and mean absolute error to evaluate the model during training. The early stop function is used to 

stop the training process when overfitting starts. 

model = Sequential() 

model.add(LSTM(32, input_shape=(train_X.shape[1],train_X.shape[2]), activation='s

elu', return_sequences=True)) 

model.add(Dropout(0.1)) 

model.add(LSTM(32, activation='selu')) 

model.add(Dropout(0.1)) 

model.add(Dense(1, activation='linear')) 
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model.compile(Adam(lr=0.0001),loss='mae') 

early_stop = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=30

, verbose=1, mode='auto') 
 

Below is a summary of the model:  

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

=================================================================       

lstm_1 (LSTM)                (None, 3, 32)             4736 

_________________________________________________________________       

dropout_1 (Dropout)          (None, 3, 32)             0 

_________________________________________________________________       

lstm_2 (LSTM)                (None, 32)                8320 

_________________________________________________________________       

dropout_2 (Dropout)          (None, 32)                0 

_________________________________________________________________       

dense_1 (Dense)              (None, 1)                 33 

=================================================================       

Total params: 13,089 

Trainable params: 13,089 

Non-trainable params: 0 

_________________________________________________________________     

 

Model Training 

The fit function is used to start the training process. Once training completed the model parameter and 

architecture is saved in a .h3 file for future predictions. 

history = model.fit(train_X, train_y, batch_size=1000, epochs=2500000, validation

_data=(test_X, test_y), shuffle=False, verbose=0, callbacks=[early_stop]) 

model.save('model3hRnn.h5') 
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Prediction 
Prediction on the test set.  The forecast scaling is then reverted back to its true value. 

prediction = model.predict(test_X, batch_size=1000, verbose=0) 

test_X = test_X.reshape((test_X.shape[0], n_hours*n_features)) 

# invert scaling for forecast 

inv_yhat = concatenate((prediction,test_X[:,:-9]), axis=1) 

inv_yhat = scaler.inverse_transform(inv_yhat) 

inv_yhat = inv_yhat[:,0] 

test_y = test_y.reshape((len(test_y), 1)) 

inv_y = concatenate((test_y,test_X[:, :-9]), axis=1) 

inv_y = scaler.inverse_transform(inv_y) 

inv_y = inv_y[:,0] 

rmse = sqrt(mean_squared_error(inv_y, inv_yhat)) 

print('Test RMSE: %.3f' % rmse) 

 

6.3 Web Application User Interface Implementation 
The web application was developed in PHP programming language and deployed on an Apache server 

for hosting. Bootstrap 4 and jQuery libraries is used for web responsiveness across all types of devices 

and animate.js library is used to generate live graph. 

In the web application there are five different sections, which are described below: 

1. Sensors management: This section allows the user to view sensors status whether the sensors 

are working as intended, offline due to malfunction and power-state of the sensor. It also allows 

the user to manually enable or disable a sensor. 

2. Graph: The user is able to view live prediction each hour, view trending of actual water flow and 

predicted water flow for the past 9-hours. The graph also indicates the warning level (flooding is 

possible) and danger level (high risk of flooding) of the river. 

3. Information: The user is able to see the actual water flow and rainfall data of the river compared 

to the +1-hour predicted flow. It also indicated status water flow (safe, warnings, danger). 

4. Logs and controls: The user can view the whole system logging information, pulls the raw 

database from the WSN processing component (raspberry pi) and allows the user to make 

instant prediction with the latest collected data. 

5. Search: The user can search for and manage another system implementation in another river. 

Figure 6.2 shows the main screen of the web application. It allows users to view real-time updates and 

predictions, and select different tasks. 
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Figure 6.2: Main Screen 

Figure 6.3 shows the prediction / real-time water flow data plotted. It also shows the warning limit and 

dangerous levels of the river water flow per hour. Y-axis represents water flow m/s2 , X-axis represents 

hours (1-hour step). 

 

Figure 6.3: Graph 
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Figure 6.4 shows buttons and logs section 

 

Figure 6.4: Buttons 

 

 The Pull Original Database allows the user to get raw collected data directly from the WSN. The data 

includes collected from all sensors. The log button when clicked, generates an excel document containing 

user action logs, for example, turning on and off sensors. Errors that occur in the WSN system are also 

logged in the excel sheet. The user can look at which point of time the malfunction occurred. Figure 6.5 

and Figure 6.6 show screenshots of the system log and error log of the WSN, respectively. 

 

Figure 6.5: System Logs 

 

 

Figure 6.6: Error Logs 
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Figure 6.7 shows live river data and predicted water flow. The user is able to see the difference between 

the actual and the predicted water flow. 

 

Figure 6.7: Live+Predicted data 

 

6.4 Test Strategies 
 

The functional and non-functional requirements were tested during the development and after the 

implementation of the developed system. The following table below shows test cases written to 

evaluate the functionality of the combined approach. 

Test Requirement F1 

Passing Criteria Admin users should be able to view both raw and 

processed real-time data (data that are being 

collected) from each node and station 

Test Real-time data can be seen in the main page 

graph and flow and rainfall data from the right 

section of the page. The user can click on the Pull 

Original Database button to download raw 

collected data from the WSN 

Status PARTIAL 
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Test Requirement F2 

Passing Criteria Normal users (mobile version) should be able to 

view predictions for the next 1-hour real time. 

Admin users should be able to view predictions 

with previous predictions trends. 

Test The main page graph shows prediction for each 

next hour. The graph also shows previous 

prediction for the past 9 hours 

Status PARTIAL 

 

Test Requirement F3 

Passing Criteria An option where the user can download the raw 

dataset 

Test The user can click on the Pull Original Database 

button to download raw collected data from the 

WSN 

Status PASS 

 

 

Test Requirement F4 

Passing Criteria Automated prediction at 5 minutes interval 

Test Prediction is done and the graph is updated at 5 

minutes interval. 

Status PASS 

 

Test Requirement F5 

Passing Criteria Admin should be able to make predictions 

instantaneously. 

Test The user can click on the Make Prediction button 

to make a prediction instantly with the last 

collected data from the WSN 

Status PASS 
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Test Requirement F6 

Passing Criteria Monitor all sensors activities including data 

transmission and power state 

Test All system logs are sent to the web server and 

stored in a database 

Status PASS 

 

Test Requirement F7 

Passing Criteria Collect data from sensors, redundant sensors and 

analyse the data to detect anomalies. 

Test The system is able to identify if a sensor is 

transmitting inconsistent data due to a 

malfunction 

Status PASS 

 

Test Requirement F8 

Passing Criteria Admin users should be able to see connected 

sensors status; online, warning, offline. 

Test The admin can see sensors status and power 

state. The user can click on Logs button to view 

detailed logs of the WSN  

Status PASS 

 

Test Requirement F9 

Passing Criteria The system should be able to calculate power 

usage, battery remaining current capacity and 

solar time. The system should also provide 

notification to the admin if a station is about to 

go offline in case of insufficient solar charging 

rate. 

Test Not Implemented 

Status FAIL 
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Test Requirement F10 

Passing Criteria Admin should be able to turn off redundant 

sensors in case of low battery alert to preserve 

power and damaged sensors 

Test The user can switch on or off a sensor. Battery 

level logs not implemented. 

Status PARTIAL 

 

Test Requirement F11 

Passing Criteria The search bar will be used to search for a river 

monitoring and predictions information. 

Test The users can search for a river/ location where 

the system is deployed and see predictions. 

Status PARTIAL 

 

 
 

6.5 Chapter Summary 
Flash flood occurrences in Mauritius have been very damaging to the infrastructure, economy and human 

lives. Nevertheless, from an intelligent system perspective, there have been relatively few occurrences of 

flash floods at national level. Thus, for effective training, more instances are required and as such, the 

Wireless Sensor Network for data collection has been partly implemented. A simulation approach has 

been adopted to avoid the delay incurred in purchasing of hardware and the construction of support 

infrastructures and as well as concrete fixing of different components in specific rivers/canals. More 

importantly, it helps to avoid unpredictable waiting time for flash flood occurrences (no episodes have 

been witnessed during the implementation of this project). Therefore, all data to be fed into the system 

have been simulated based on data available from different Mauritian institutions (namely: The Water 

Resources Unit and Mauritius Meteorological Services). The Machine Learning Engine has been 

completely implemented using python and deployed on a web server, from which a system administrator 

can use the web interface to view the river monitoring details and predictions of the system. Given all 

assumptions made on the WSN, the system tests performed have been quite successful. A more detailed 

evaluation is presented in the next section. 
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Chapter 7 – Experimental Results & Evaluation 
In this chapter, the proposed solution is evaluated using simulation techniques. Since the WSN has been 

implemented as a prototype, detailed explanation of all simulated datasets is also provided. All 

experiments in this section refer mainly to the performance and effectiveness of the Machine Learning 

Engine. 

 

7.1 Evaluation Method 
Different Machine Learning algorithms and datasets are evaluated to find the most appropriate and 

effective prediction model. It is to be noted that the same experimental setup described in section 4.5.2 

(page 33) has been used, i.e. same computer resources and python libraries. In this section, river flow 

from the WRU and rainfall data from the MMS are used as the building blocks to generate synthetic 

datasets. Approximations based on the river ‘Rivière du Poste’ have been considered, as peaks of water 

flow from WRU data corresponds to the high rainfall amount which generated flash floods in 2008. As 

depicted in the diagram below, the data generated by the WSN sensor devices are simulated with the 

help of data from the WRU and MMS. Once the synthetic dataset is created, its divided into 70% and 30% 

for training and testing respectively. The training set is used to train the Machine Learning algorithm to 

produce a flood prediction model (step 2). Following which, in step 3, the test data set is used for making 

predictions. As per our investigations, it has been noted that very few occurrences of flash flood have 

been recorded for Mauritius over the last 15 years. As such synthetic datasets which contains enough 

occurrences has been randomly generated, based on real past data. The sections below describe several 

experiments which include dataset processing, training and prediction. Different ML techniques have 

been implemented to find the best approach by minimizing prediction errors. 

 

 

Figure 7.1: Three step approach 

7.1.1 Data Set Information 
To evaluate the effectiveness of the proposed method, several processed versions of the dataset are used. 

The description of the time-series datasets used in the experiments analysis is as follows: 

1) Unprocessed Water Flow Dataset (UWF): The dataset contains 389 days of water flow data extracted 

from water flow peaks form year 2006 to 2010. 
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2) 3-Hour Water Flow Dataset (HWF): The 389 daily records of the UWF dataset is converted to 3-hour 

intervals records by subtracting the following water-flow value to the previous value, divided by 8. A 

random percentage of 0-15% is added to each record to give the dataset some randomness 

3) Hourly Water Flow Dataset (HWF): The 389 daily records of the UWF dataset is converted to hourly 

records by subtracting the following water-flow value to the previous value, divided by 24. A random 

percentage of 0-15% is added to each record to give the dataset some randomness. The dataset 

contains 7324 records. 

4) Hourly Water Flow-Rainfall Dataset (HWFR): On February 26th 2017, WRU recorded a peak water 

flow of 31.5 m3/s and MMS recorded 200 mm of rainfall. To assess the necessity of MMS data, 

synthetic rainfall hourly data is created. We assume that 31.5 m3/s is equivalent to 200 mm of rainfall, 

thus all the water flow records are converted proportionally to rainfall by dividing the dataset 

waterflow peak by 200 mm, multiply by the flow of each record to option the rainfall values. A random 

percentage of -15 to 15% is added to each for randomness. The dataset contains 7323 records. 

5) WSN Hourly Water Flow-Rainfall Dataset (WHWFR): New water flow and rainfall data are created to 

simulate collection of data upstream. This simulation involves collection of data with two set of water 

flow and rainfall sensors places at two different points in the river, upstream and downstream 

(flooded area). The HWFR data are duplicated and divided by 2 to simulate flow upstream. The dataset 

contains 7324 records. Figure 7.1 WHWFR shows data represented on a graph. 

 

Figure 7.1: WHWFR graph 

6) WSN Hourly Water Flow-Rainfall duplicate Dataset (WHWFRD): Figure 7.1 WHWFR shows that the 

highest peak at around hour 2700 is unique throughout the whole dataset. To ensure the model learns 

to predict high peaks, the peak sequence is duplicated randomly 11 times in the dataset as shown in 

figure WHWFRD. The dataset contains 8148 records. Figure 7.2 shows the WHWFRD data graph. 
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Figure 7.2: WHWFRD graph 

7) High Peak test dataset (HPT): This dataset contains all the peaks scenarios of the WHWFR dataset. It 

is used to evaluate all the different prediction methods of the WHWFR and WHWFRD datasets. The 

dataset contains 1567 records. The HPT dataset is shown in Figure 7.3. 

 

 

Figure 7.3: HPT graph 

7.1.2 Experimental results and analysis 
To find the most appropriate prediction model, several methods have been trained and compared for 

dataset WHWFR and WHWFRD. The trained models are then evaluated with the HPT dataset to obtain 

the RMSE for all water flow and flash flood scenarios. 

Scenario 1 

Table 7 shows the performance comparison of MLP and RNN for the WHWFR dataset. Both model’s 

parameters are configured as closest as possible. RNN scored the lowest error compared MLP but the 

Training time is more than MLP. While the training and testing time is higher, it is justifiable as RNN uses 

and keeps sequence of data in memory for the next prediction. Hence the higher dimensionality data 

costs more in terms of computational power. Figure 7.4 and Figure 7.5 show the predicted values 

compared to the actual values for MLP and RNN, respectively. Figure 7.5 shows the MLP model causes 

false negative in all cases, while figure 5 shows that RNN prediction is closer to the actual values but gives 
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false positive in most cases. As RNN scored the error, in the next experiment GA is used to optimize the 

RNN model parameters and configure the model network architecture to obtain the best results possible. 

TECHNIQUE MLP RNN 

MODEL PARAMETERS Dense(32, activation='selu'), 
Dropout((0.1)), 
Dense(32, activation='selu'), 
Dropout((0.1)), 
Dense((1), activation='linear') 

 

LSTM(32, activation='selu', 
return_sequences=True), 
Dropout(0.1), 
LSTM(32, activation='selu'), 
Dropout(0.1), 
Dense(1, activation='linear') 

TRAINING TIME (S) 41.52 44.45 
TESTING TIME (S) 1.519 4.694 
EVALUATION RMSE 5.258 4.874 

Table 7: Models Comparison of Scenario 1 

  

 
Figure 7.4: MLP result (scenario 1) 

 
Figure 7.5: RNN result (scenario 1) 

 

Scenario 2 – GA Optimization 

Experiments from scenario 1 shows that RNN is better in terms of RMSE of 4.874. From this experiment 

the RNN model parameters configuration is optimized with Genetic Algorithm (GA) from a pool of 

parameters given in Table 8. The performance of RNN-GA is compared to the previous RNN experiment. 

The result shows that RNN-GA is significantly better in prediction RMSE. RNN-GA is computationally 

intensive and requires nearly 7 hours to train the model. Also, it takes 1.357 seconds longer for the HPT 

dataset as the model network is now more complex with 3 layers of 60 neurons. Figure 7.6 show the 

prediction comparison of RNN-GA. The model is able to make good prediction in most cases, but is unable 

to capture the highest peak at around hour 600. This is due to the lack of high peak instances in the dataset 

training. This experiment is able to show that the WHWFR dataset lacks data, to compensate a new 

dataset is created (WHWFRD), which contains duplicates of high peaks data. In the next experiment, the 

WHWFRD is used in the regular MLP and RNN models to observe the RMSE of the new dataset compared 

to Scenario 1. 
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 PARAMETERS 

NUMBER OF NEURONS 4,12,20,32,42,60,70 
NUMBER OF LAYERS 2,3,4,5 
DROPOUT 0, 0.1, 0.2, 0.3,0.4,0.5 
ACTIVATION relu, elu, tanh, sigmoid, selu, softplus, softsign, 

hard_sigmoid, linear, softmax 
GENERATION 5 
POPULATION 15 

Table 8: GA parameters (scenario 2) 

 

 

TECHNIQUE RNN RNN-GA 

MODEL PARAMETERS 
SELECTED PARAMETERS (RNN-
GA) 

LSTM(32, activation='selu', 
return_sequences=True), 
Dropout(0.1), 
LSTM(32, activation='selu'), 
Dropout(0.1), 
Dense(1, activation='linear') 

LSTM(60, activation='softsign', 
return_sequences=True), 
LSTM(60, activation='softsign'), 
LSTM(60, activation='softsign'), 
Dropout(0.1), 
Dense(1, activation='linear') 

TRAINING TIME (S) 98.45 24582 
TESTING TIME (S) 4.694 6.051 
EVALUATION RMSE 4.874 0.973 

Table 9: Models Comparison of Scenario 2 

 

 

Figure 7.6: RNN-GA results (scenario 2) 
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Scenario 3 

Table10 shows the performance comparison of MLP and RNN for the WHWFRD dataset. Both model’s 

parameters are configured as closest as possible. RNN scored the lowest error compared MLP with nearly 

half the RMSE. Figure 7.7 and Figure 7.8  show the predicted values compared to the actual values for 

MLP and RNN, respectively. Figure 7.7 shows the MLP model now overshoots the target compared to MLP 

experiment in scenario 1 causing false positive in most cases. Figure 8 shows a substantial improvement 

compared to RNN experiment from scenario 1. However, the prediction is rather spiky, which may confuse 

the end user about the water flow trends. Also, the RNN RMSE is more than twice lower than RNN scenario 

1 and this indicates that having more high peaks data improves the prediction error. To further lower the 

error GA is added to the model in next experiment. 

 

TECHNIQUE MLP RNN 

MODEL PARAMETERS Dense(32, activation='selu'), 
Dropout((0.1)), 
Dense(32, activation='selu'), 
Dropout((0.1)), 
Dense((1), activation='linear') 

 

LSTM(32, activation='selu', 
return_sequences=True), 
Dropout(0.1), 
LSTM(32, activation='selu'), 
Dropout(0.1), 
Dense(1, activation='linear') 

TRAINING TIME (S) 41.52 57.52 
TESTING TIME (S) 1.554 4.83 
EVALUATION RMSE 4.409 2.129 

Table10: Models Comparison of Scenario 3 

  

 
Figure 7.7: MLP result (scenario 3) 

 

Figure 7.8: RNN result (scenario 3) 
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Scenario 4 – GA Optimization 

In this experiment the RNN model parameters configuration is optimized by Genetic Algorithm (GA) from 

a pool of parameters given in Table 11. The performance of RNN-GA is compared to the previous RNN-GA 

experiment from scenario 2. The result shows that new RNN-GA is significantly better in prediction RMSE, 

and is able to predict highest water flow peak at hour 600 with low error margin. The new RNN-GA takes 

1.989 seconds longer than the previous model as the network is more complex with 4 layers of 42 neurons. 

Figure 7.9 shows the prediction comparison of RNN-GA. The RNN-GA model with the WHWFRD dataset is 

able to predict all cases of floods cases with low RMSE of the HPT dataset. 

 PARAMETERS 

NUMBER OF NEURONS 4,12,20,32,42,60,70 
NUMBER OF LAYERS 2,3,4,5 
DROPOUT 0, 0.1, 0.2, 0.3,0.4,0.5 
ACTIVATION relu, elu, tanh, sigmoid, selu, softplus, softsign, 

hard_sigmoid, linear, softmax 
GENERATION 5 
POPULATION 15 

Table 11: GA parameters (scenario 4) 

TECHNIQUE RNN-GA (SCENARIO 2) RNN-GA (SCENARIO 4) 

MODEL PARAMETERS 
SELECTED PARAMETERS (RNN-
GA) 

LSTM(60, activation='softsign', 
return_sequences=True), 
LSTM(60, activation='softsign'), 
LSTM(60, activation='softsign'), 
Dropout(0.1), 
Dense(1, activation='linear') 

LSTM(42, activation='softsign', 
return_sequences=True), 
LSTM(42, activation='softsign'), 
LSTM(42, activation='softsign'), 
LSTM(42, activation='softsign'), 
Dropout(0.1), 
Dense(1, activation='linear') 

TRAINING TIME (S) 24582 24582 
TESTING TIME (S) 6.051 8.04 
EVALUATION RMSE 0.227 0.973 

Table 12: Models Comparison of Scenario 4 

 

Figure 7.9: RNN-GA result (scenario 4) 
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7.1.3 Performance Analysis 
The comparison result in terms of the RMSE is shown in Table 13. It can be seen that RNN-GA outperforms 

all approaches on both types of dataset. For example, RNN-GA with WHWFRD train dataset and HPT test 

dataset obtain the lowest RMSE of 0.227. For dataset WHWFR, Higher RMSE are seen across all prediction 

methods compared to WHWFRD dataset. While RNN-GA obtained the best results in RMSE, we observed 

that the training time has increased by more than 550 times or around 6.8 hours. We also observed an 

increase of the test time for RNN-GA, and this is due to the increase of complexity of the network 

architecture as the network has nearly twice more nodes and twice the number of layers compared to 

MLP and RNN alone. 

 RMSE (m3/s) Training Time (s) Test set prediction time (s) 

MLP (scenario 1) 5.258 41.52 1.519 

RNN (scenario 1) 4.874 44.45 4.694 

RNN-GA (scenario 2) 0.973 24582 6.051 

MLP (scenario 3) 4.409 41.52 1.554 

RNN (scenario 3) 2.129 57.52 4.83 

RNN-GA (scenario 4) 0.227 24582 8.04 
Table 13: Performance Comparison of Experiments 

In this section, three prediction techniques have been tested and evaluated in four scenarios along with 

seven datasets. From these created datasets, two are used to train the models and one is used as test set 

to evaluate the trained model ability to predict water flow. The two datasets used for training are the 

WHWFR which represents water flow and rainfall from the period of year 2006 to 2010, processed to 

reflect the proposed WSN design data collection and WHWFRD which is the same as WHWFR but contains 

duplicates of the highest water flow and rainfall peaks. The best results with lowest error are obtained 

with RNN and RNN-GA from scenario 3 and 4 with a RMSE of 2.129 and 0.227, respectively. While RNN-

GA has the lowest error, it requires nearly 7 hours to find the best network architecture to train the model 

compared to less than 1-minute training time of RNN and MLP alone. From the conducted experiments, 

RNN-GA is considered as the best solution to predict flash flood as high accuracy is critical in nowcasting 

events of flash floods. The low RMSE on RNN-GA outweigh the high training time as frequent model 

training is not required, training the model with new data after events of flooding does not stop the 

previous model from working during the training time. The newly trained model RMSE is compared to the 

previous model and the new trained model is applied to the nowcasting system only if the model has 

lower RMSE. 

 

7.2 RNN-GA Evaluation 
In this section, the trained RNN-GA model is evaluated over normal conditions, low rainfall conditions and 

very heavy rainfall conditions. The evaluation is presented using seven regression metrics for better 

understanding. The three scenarios are devised based on four years of data and are as follows: Firstly, a 

dataset containing normal occurrences of flash floods. Secondly, a dataset containing no flash flood 

occurrences. Lastly, a dataset containing an excessive number of flash flood occurrences. The outcome of 

this evaluation is to deduce if the trained nowcasting model is able to provide accurate prediction 

depending on several weather conditions and if whether frequent training is required. 



71 
 

7.2.1 Dataset Creation 
In this section, three different datasets are created. The first dataset contains rainfall and waterflow 

frequency and intensity based on the WRU data from 2006-2010. As seen in Figure 7.10, this dataset 

contains a few episodes of flash flood as experienced by Mauritius till 2010. The second dataset (as seen 

in Figure 7.11) simulated over four years contains no occurrence of flash flood depicting mainly long 

periods of drought. As seen in Figure 7.12, the third dataset simulates an increased number of heavy 

rainfall and flash flood occurrences for a period of four years. 

 

Figure 7.10: Normal 

 

Figure 7.11: Drought 

 

Figure 7.12: Extreme 
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7.2.2 Simulation results 
The trained RNN-GA model from Chapter 6, Scenario 4, is evaluated against 3 different dataset scenarios. 

The conducted experiments are simulations of scenarios that may occur in the following next years. The 

experiments are evaluated with the following metrics; Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Explained Variance Score (EVS), Mean Absolute Error (MAE), Mean Squared Log Error 

(MSLE), Median Absolute Error (MeAE), R2 Score (R2). Table 14  below shows the evaluation of the 

simulations using the mentioned metrics for three main scenarios. 

 Normal Drought Extreme Flooding 

MSE 0.057 0.037 0.235 

RMSE 0.227 0.191 0.485 

EVS 0.998 0.995 0.995 

MAE 0.122 0.073 0.119 

MSLE 0.001 0.003 0.002 

MEAE 0.066 0.032 0.087 

R2 0.998 0.995 0.995 

Table 14: Evaluation 

After evaluation has been carried out on the 3 scenarios, it is determined that prediction on drought 

scenario provides the lowest error and results are as expected. Hence, future training on drought or low 

rainfall should be avoided and filtered out as there are no additional gains in the prediction flash flood. 

Extreme Flooding has the highest error. Most of the errors occurs at the peak of flash floods occurrences. 

A model training is therefore required upon each flash flood occurrences and specially if the flooding has 

exceeded previous records. 

 

7.3 General Discussion 
The experiments have been conducted using a systematic approach, as most of the rainfall and water flow 

data have been simulated from information gathered by WRU and MMS. In a first instance, the Machine 

Learning approach was evaluated, and we conclude that the Recurrent Neural Network with Genetic 

Algorithm (RNN-GA) provides the highest prediction accuracy with a root mean squared error of 0.227, 

but at the expense of a relatively high training time of about 6.9 hours. From an operational perspective, 

this high training time does not necessary affect the proposed solution, as it is expected that subsequent 

training sessions can be performed in batch. Training eventually takes place before first time usage of the 

prediction system and is further required after a batch of flash flood occurrences. Since the machine 

learning technique demonstrates a relative high degree of accurate predictions, a second set of 

experiments have been conducted to further evaluate the approach in three specific scenarios, i.e. with 

normal conditions (normal flood conditions), followed by very low rainfall (no flood conditions) and very 

heavy rainfall (extreme flood conditions). All the simulated data have been approximated from data 

collected by the WRU from 2006 to 2010. The results demonstrate that the machine learning model 

performs relatively well in the first two conditions, showing higher degree of accuracy. As for the last case 
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which contains extreme conditions which have not been experienced by Mauritius, the prediction model 

requires more training to better account for these new values. As extreme conditions were not part of 

the initial training set, the third scenario demonstrates that the model must be trained frequently only if 

patterns of rainfall and water flow leading to flash floods changes drastically. It is nevertheless expected 

that the model is trained after a few sets of new flash flood events even when there are no, or few changes 

in patterns. 

All the conducted experiments demonstrate that a machine learning approach for the nowcasting of flash 

flood based on river monitoring is achievable. Nevertheless, the application of the solution requires 

specific training set data collected over different weather and topological conditions in different parts of 

the island over several years with flash flood occurrences. This chapter (and the study) is limited by the 

lack of such data sets. It can be enhanced with the setting up of the proposed wireless sensor network for 

real time data collection. Furthermore, all experiments have been conducted on a specific simulated river 

with a specific set of characteristics. The prediction results therefore, cannot be directly applied to all 

rivers/canals around the island. Extended research from a hydrological perspective is required to further 

assess the system in various different real-world conditions. 
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Chapter 8 – Conclusion & Future Works 
In this chapter, a detailed summary of every phases of the research study is presented. The summary 

covers the initial part of the research study, starting with the literature review till the design and 

development of the system and the evaluation of Machine Learning Engine. 

8.1 Research Summary 
This research study investigates the possibility of predicting flash flood occurrences in Mauritius using an 

intelligent automated system. As flash floods are a relatively new phenomenon in Mauritius, not enough 

work is available at national level towards its prediction. The topology of the island indicates a relative 

steep slope towards sea level which when combined with heavy rainfall events causes rapid water flow in 

large volumes which can be dangerous specially with flow obstructions at bridges and high soil saturation 

levels. Increased urbanisation also contributes to the increased risk and occurrences of flash floods.  

Different types of ICT based systems exist or have been proposed for the prediction of floods around the 

world. They mainly involve the use of sensors or satellite images to capture data. The core of these 

systems consists mainly of a statistical prediction model, and very few implementations are based on 

modern machine learning techniques, although their rate is success is satisfactory. Deep Learning is a 

recent ML technique which has proved to be very effective in various domains. 

While modern ML techniques might be producing interesting prediction results, there is a need for specific 

data to be collected and fed into the system. It is a sine qua non for successful results from modern 

machine learning techniques. Rainfall, water level, temperature, soil moisture, land topology, humidity 

and wind speed are some of the data used in flood prediction systems. Moreover, some systems use 

satellite and radar images. Data availability is limited to the Mauritius Meteorological Services (MMS) and 

the Water Resources Unit (WRU) in the Mauritian context. As at now, the MMS can provide near real time 

data, with a window of 3 hours, for all recorded parameters from its two main stations located in the 

central part of the island, the Vacoas Station and in the South East, Plaisance Station although there are 

various other stations around the island. Its only during special situations, that data are collected and 

analysed on an hourly basis. The Water Resources Unit is responsible for the assessment, mobilisation, 

control, development, management and conservation of water resources in Mauritius. It is understood 

that they use around 150 gauging stations around the island to collect water flow and level in canals and 

rivers. This data is available from 2006 to 2010 and contains only contains certain canal/rivers. Reconciling 

the data between these two institutions have been one the major difficulties experienced by this study. 

A system which focuses on three main aspects has been proposed and designed. The first element of the 

system is a Wireless Sensor Network (WSN) for monitoring water flow at natural and man-made 

canals/rivers. This wireless network of nodes can transfer data in real time to a main station, which feeds 

the data into the second element of the system, the Machine Learning Engine. The data needs to be 

divided into a training and testing set. The Machine Learning algorithm requires training on various 

scenarios (from normal to extreme conditions, with parameters such as velocity of water flow, height of 

water level, temperature, etc) which is not available. Therefore, a combination of existing data has been 

used to simulate the output of WSN. Once simulated the data is fed into the system to train a Machine 

Learning algorithm which generates a prediction model. The latter can further flag for possible 

occurrences of possible flash flood events in real-time based on amount of rainfall. The design also caters 

for a web interface design which provides notifications to users. 
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During implementation of the system, it has been decided to simulate the WSN system as it involves 

setting up various infrastructures in canals/rivers from which data can be collected. Also, in the first 

instant, such an infrastructure will not be effective for training the model. Therefore, a laboratory 

simulation was devised to determine the feasibility of the WSN System. An extended version of the 

existing data available from the MMS and WRU has been used to further generate data for training the 

machine learning model, using a Recurrent Neural Network approach. A Web Interface was successfully 

implemented which shows the current values and the model’s predictions. 

Since most of the data used in the system have been generated by simulation, our evaluation focused on 

the efficiency of the prediction model. Several experiments with different datasets and machine learning 

algorithms have been conducted and the Recurrent Neural Network (RNN) optimised with Genetic 

Algorithm (GA) showed the lowest error in prediction when compared with other approaches. We further 

evaluated the trained model with different sets of data in order to distinguish from, and avoid overfitting. 

These experiments show that data corresponding to past weather conditions in Mauritius provides a 

better result when compared to the extreme conditions. Results demonstrate a root mean squared error 

of only 0.227 m3/s for the prediction of flash flood. As global warming is creating new patterns of weather 

conditions, it is important that the model is trained after every new flash flood occurrence. This will 

contribute to maintain and further increase its accuracy. 

 

8.2 Research Limitations 
The main challenge of this research work is two-fold. Firstly, its is limited to the type of data available. 

Data currently available can hardly be used for real time nowcasting of flash floods as most of the 

institutions work in isolation. For example, with features such as rainfall, temperature (Maximum, 

minimum, dry bulb, wet bulb and dew point) and relative humidity are not effective for the prediction of 

flash floods. As for river monitoring data, it is not available for all rivers of the island and for specific time 

periods. Given all these constraints, we made some reconstructions based on specific dates of events, 

using water flow for one specific river and the amount of rainfall. Eventually, more parameters can provide 

better insights. Different data capture techniques, concepts, tools and frequency of monitoring must be 

considered. The second major issue experienced is the setting up of the proposed WSN infrastructure, 

which requires much more resources as initially expected. Therefore, results from the study must be taken 

with caution and avoid generalisation without performing more realistic (out of laboratory) experiments. 

 

8.3 Future Works 
In an attempt to further enhance the Flash Flood Nowcasting system, the Wireless Sensor Network needs 

to be setup in a real world setting for data collection. Various sensors have been identified during the 

research work, but they need to be tested in the context of our local rivers/canals to identify their 

effectiveness, lifetime and limitations. In the meantime, since data is limited, we believe that more 

datasets with various features need to be simulated in various topologies and river configurations to 

better assess the generalisation of the results.  
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Director of Public Prosecutions office 
PRESS RELEASE   

Judicial Enquiry into the cause of death of Jeffrey Allan Wright, Sylvia Wright (born Fokeer), Toolsee 

Ram Ramdhari, Pravin Kumar Khoosye, Karmish Saligram Tewary, Dhanraj Saligram Tewary, Retnon 

Sithanen, Rabindranath Bhobany, Fan Lan Wong Tat Chong Lai Kim and Stevenson Henriette who died 

during the floods of 30th March 2013.  

  

Following the enquiry carried out by the police into the cause of death of 1) Jeffrey Allan Wright; 2) 

Sylvia Wright (born Fokeer); 3) Toolsee Ram Ramdhari; 4) Pravin Kumar Khoosye; 5) Karmish Saligram 

Tewary; 6) Dhanraj Saligram Tewary; 7) Retnon Sithanen; 8) Rabindranath Bhobany; 9) Fan Lan Wong 

Tat Chong  

Lai Kim and 10) Stevenson Henriette, the Office of the Director of Public Prosecutions instituted a 

Judicial Enquiry before the District Court of Port Louis on the 4th March 2014 pursuant to sections 111 

and 112 of the District and Intermediate Courts (Criminal Jurisdiction) Act.    

The proceedings started before the Learned Magistrate Mrs Ida Dookhy-Rambarun, on the 21st April 

2014 and 97 witnesses including the relatives of the deceased, representatives of the Police Force, Fire 

Services, Mauritius Meteorological Services, Rapid Security Services, Caudan Security Services, Prime 

Minister’s Office, National Disaster Risk Reduction and Management Centre, the National Development 

Unit, the Ministry of Public Infrastructure and the Ministry of Housing and Lands were heard. CCTV 

footages of the events were also viewed. The proceedings were completed on the 15th July 2014. On the 

29th December 2014, the findings of the Learned Magistrate were communicated to the Director of 

Public Prosecutions.  

  

A. Background facts   

The learned Magistrate found established the following background facts:  

(a) On the 30th March 2013, following the heavy flooding in Port-Louis, ten persons lost their lives. 

The bodies of six persons namely Jeffrey Allan Wright, Sylvia Wright (born Fokeer), Toolsee Ram 

Ramdhari, Pravin Kumar Khoosye, Karmish Saligram Tewary and Dhanraj Saligram Tewary were 

retrieved from the Caudan underpass. The bodies of Rabindranath Bhobany and Fan Lan Wong 

Tat Chong Lai Kim were retrieved from the underground parking of Harbourfront Building. The 

body of Retnon Sithanen was found in Company Garden while the body of Stevenson Henriette 

was found near KFC of Chaussée Street.  

  

(b) More than 136mm of rain fell within two hours i.e. between 13h00 and 16h00. Members of the 

public were taken by surprise by the sudden downpour.  
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(c) The city centre is surrounded inland by a mountain range and because of the steep mountain 

slopes, the storm water generated reaches the foot of the mountain very quickly. The water 

crosses the city area in a very short time through the existing water courses to reach the sea.  

  

(d) The Port Louis area between the Caudan Flyover and the Place D’Armes is drained by four main 

water courses namely the Deviation Canal which runs along Signal Mountain Road, the drain along 

Volcy Pougnet Street, Le Pouce Stream which passes behind Cinema Majestic and Le Pouce Canal 

which passes in front of the Museum and Shoprite Supermarket. These main water courses were 

completely flooded.  

  

(e) After the flooding some 300 tons of debris and garbage were removed from the drains. The debris 

included mattresses, old fridge, iron sheets, plastic bags, bottles and vegetation.  

  

(f) The cumulative effect of the deficient drainage system and the surface run-off generated with the 

urban area has contributed to the flooding.  

  

B. Assessment of the role of various government Agencies   

The Learned Magistrate commended the assistance provided by officers of the Special Supporting Unit, 

the National Coast Guard, the Special Mobile Force, the Helicopter Squadron, the GIPM and the Fire 

Services. Based on the evidence in front of her, she identified a number of disturbing institutional 

failures: 

 (a) The Mauritius Meteorological Services (MMS)  

  

The special bulletin of the MMS came relatively late when several places were already flooded 

so that there was little room for precautionary measures.  

  

The absence of a weather radar presented a serious shortcoming in the weather monitoring 

system. The forecasters did not resort to other resources which were available such as the 

weather forecast of Reunion Island.   

  

The MMS cannot vouch about the amount of rainfall that fell on Signal Mountain. An automatic  

Weather Station and a weather radar would have helped the MMS to give a more precise 

forecast.   
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The MMS is not equipped in terms of knowledge and skills to predict flash floods. The MMS 

alone with its data cannot forecast flash floods. Other Stakeholders like the Water Resources 

Unit, the Ministry of Public Infrastructure and Local Authorities need to provide their input.   

(b) The Water Resources Unit (WRU)  

Whilst the Water Resources Unit should be a major stakeholder for the forecasting of floods, it 

lacks required expertise in flooding.  

(c) The National Disaster Operations and Coordination Centre (NDOCC)  

The NDOCC was not equipped to deal with the flash floods of the 30th March 2013.  The Cyclone 

and Other Natural Disaster Scheme 2012-2013 did not make any provision for flash floods.  

(d) Police and Fire Services  

The Police as well as the Fire Services faced communication problems on the 30th March 2013. 

The telephone network was clogged and people could not reach the Fire Services. The Fire 

Services did not have sufficient manpower to deal with the situation.   

(e) The Municipal Council of Port-Louis, the Ministry of Public Infrastructure (MPI), the Ministry of 

Environment and Sustainable Development and the National Development Unit  

There was lack of coordination between the relevant Authorities as to the maintenance of 

several major drains. Due to lack of maintenance, some major cut- off drains have been reduced 

to a poor state and this has contributed to the major flood in Port-Louis.  

Furthermore, in some places the drains were unlined. In other places the drains have undergone 

physical damage and have not been repaired. The capacity of drains has been reduced due to 

pavement structure or vegetation growth. There are illegal constructions by the citizens on 

drains or by the side of existing drains.  

A number of properties dispose of their roof and yard storm water on the road immediately in 

front of their premises.  

  

C. Constructions and other obstructions in Le Pouce Stream and Le Pouce Canal  

Structures on Le Pouce Stream and Le Pouce Canal which have been allowed by the Authorities have 

reduced the cross sectional area of the canals, for instance the construction of KFC building on 

Chaussée Street on Le Pouce Canal. The foundation of the building is on the drain and it creates an 

obstacle for the water flow. Similarly, in respect of the covered spaces of Air Mauritius Parking, 

Rogers Parking, Hawkers palace and Garden Tower, columns have been casted on the river course.  

The metal gate which has been placed on Le Pouce Canal near the museum hindered the flow of 

water. Pipelines of the Central Water Authority, Waste Water Management Authority and of the 

Mauritius Telecom were found running across the water channels.  

  

D. Causes leading to the death of the deceased persons   

(a) Retnon Sithanen accidentally fell in Ruisseau Le Pouce and got swept away.  
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(b) Stevenson Henriette was carried away by the flood water and his body was stuck next to KFC 

Building of La Chaussée Street.  

(c) In respect of the two casualties inside the Harbour front parking, there was heavy flow of water 

entering the parking and metal barrier had collapsed with the water pressure. Only one of the 

three accesses to the parking had been blocked by the security officers. The cameras inside the 

parking were not working. The water pumps were in working condition but were insufficient. The 

security officers had been taken by surprise and were not prepared for the situation.  

(d) In respect of the six casualties inside the Caudan Underpass which was completely flooded, the 

Court highlighted that nobody expected the underpass to be submerged completely. The camera 

was defective. The water pumps were inadequate. The measure of having a security officer inside 

the underpass on a permanent basis for the security of the tenants and users was ineffective. The 

security officers failed to close the gates of the underpass in order to prevent people from 

acceding to it. The underpass was not equipped for flooding water.  

  

E. Pertinent Observations by the Learned Magistrate  

(a) There must be in place a weather radar in Mauritius as well as an Automatic Weather Station in 

the region where the rain fell on the 30th March 2013.  

(b) The practice of the MMS must be revisited so that there is more proactive response if such 

situations arise in the future.  

(c) The MMS should make maximum use of the data available from the weather radar from Reunion 

Island as well as other data which may be accessible on the internet, pending the availability of a 

weather radar. Forecasters should also bear in mind the general effects and consequences of 

climatic change worldwide.  

(d) The MMS and the WRU must collaborate fully so that information is disseminated efficiently and 

in time to the National Disaster Risk Reduction and Management Centre.  

(e) Mauritius must make appropriate investments in capacity building, technology development, 

social infrastructure and sustainability so as to be better prepared to face the phenomenon.  

(f) There should be better maintenance of drains and better coordination between the relevant 

authorities in relation to the maintenance of drains.  

(g) As per the recommendations of the consultants, all structures over the waterways must be 

removed to facilitate water flow.  
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(h) There must be an overall strategy to address the problem of flooding and there is a need for 

appropriate infrastructure for drains in Port-Louis.  

(i) Awareness must be created amongst the public and the communication network must be 

strengthened. There should be an alarm system so that the public can be warned in a timely 

manner. The PIOR (Police Information Room) should be used to enhance timely coordination 

between all relevant bodies.  

(j) Persons in charge of the security of the public should be given adequate training so that they are 

fully equipped to face the crisis. The framework within which companies offering security services 

operate must be revisited.  

  

  

  

Office of the Director of Public Prosecutions 6th January 2015  
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Flood Damages 

  

  

  

Figure A.1: Canal Dayot Figure A.2: Poste-de-Flacq 

Figure A.3: Montagne Blanche Figure A.4: Music Instruments Shop, La Louise, Quatre-Bornes 

Figure A.5: La Louise, Quatre-Bornes Figure A.6: Albion 
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Flash Flood Forecasting/Nowcasting Algorithms 

A.4.1 Basha (2008) flood prediction linear regression algorithm. 
The forecasting algorithm below is a multiple linear regression model. Inputs of past flow (𝜙), air 

temperature (𝜃), and rainfall (𝜌), defining their orders as N, P, and Q respectively, and a single output, 

predicted river flow (Y) By weighting the past N observations of all relevant input variables taken at time 

t to produce a prediction of the output variable at time t + TL. To determine the weighting factors, some 

amount of data is designated as the training set for the model, defined here as the data seen in time TT 

(an application-defined parameter), and a simple inversion-multiply operation provides the coefficients 

from this data, which is the prediction model until recalibration occurs, defined as a time window of length 

TR.  The model self-calibrates, can use very little training data (on the order of weeks). 

Figure A.7: Baie-du-Tombeau Figure A.8: River in Vacoas 
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Equation 1: Basha Linear Regression Algorithm 

A.4.2 Wu & Chau (2006) Artificial Intelligence flood forecasting algorithms 
Genetic Algorithm-Based Artificial Neural Network (ANN-GA)  

GA is used to optimize initial parameters of ANN before trained by conventional ANN. In the GA sub-

model, the objective function used for initializing weights and biases is represented as follows: 

 

Equation 2: Genetic optimisation Algorithm 
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where W is the weight, 𝜃 is the bias or threshold value, i is the data sequence, 𝜌 is the total number of 

training data pairs, Xi is the ith input data, Yi is the ith measured data, and 𝑓(𝑋𝑖  ,W , 𝜃) represents simulated 

output. The main objective of the sub-model is to determine optimal parameters with minimal 

accumulative errors between the measured data and simulated data.  

Adaptive-Network-Based Fuzzy Inference System (ANFIS)  

Each input variable ( x , y , and z ) is divided into three categories. Equally spaced triangular membership 

functions are assigned. The categories are assigned: “low,” “medium,” and “high.” The number of rules in 

a fuzzy rule base is Cn, where C is the number of categories per variable and n the number of variables. 

The format of the rule set contains an output Oi,j,k , for a combination of category i of input variable x, 

category j of input y , and category k of input variable z , respectively. If a rule is triggered, the 

corresponding memberships of x , y , and z will be computed. The weight Wi,j,k , to be assigned to the 

corresponding output Oi,j,k , will be furnished by the result of a specific T-norm operation. Multiplication 

operation is adopted here. A single weighted average output will then be acquired by combining the 

outputs from all triggered rules as follows:  

 

Equation 3: ANFIS 

  

 

A.4.3 Chaing et al. (2007) Recurrent Neural Network QPE and QPF 
Chiang et al. (2007) recurrent neural network (RNN) model for quantitative precipitation estimation (QPE) 

and quantitative precipitation forecasting (QPF) by utilizing the meteorological radar data. The model uses 

gauge observations and satellite-derived precipitation. The learning algorithm that was used to calibrate 

Figure A.9: RNN architecture 
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the RNN is referred to as real-time recurrent learning (RTRL) (Chang, et al., 2002). Consider a three-layer 

fully interconnected RNN as shown in Figure A.9 which includes M external inputs, N hidden neurons and 

K outputs. Let V and W denote the N x K weight matrix and N x (M + N) recurrent weight matrix, 

respectively. 

The network activity of neuron j, for j ∈ B, is computed by 

A denotes the set of indices i for which Xi is an external input, and B denotes the set of indices i for which 

yi is the output of the processing layer. The output of neuron j in the processing layer is given by passing 

netj through the nonlinear transfer function f(.), yielding 

The output of neuron k in the output layer is computed by 

The output of network (Zk) is given by passing netk through the nonlinear transfer function f(.), yielding  

To minimize the objective function (Etotal), the steepest descent method is applied to adjust the weights 

(V and W) along the negative of ∇Etotal. The objective function is obtained by summing instantaneous 

network error (E(t)) over all time T and E(t) can be defined as follows: 

where Tk(t) is the target value of neuron k at time t, and Zk(t) is the network output of neuron k at time t. 

The weight change for any particular weight Vkj can thus be written as  

By using the chain rule, the partial derivative of Vkj can be obtained as follows: 

The same method is also implemented for weight Wmn. Then the weight changes can be computed as 

Where       n1 and n2 are learning rate parameters. 
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A.4.4 Abdul-Kader et al. (2018) Forecasting Rainfall based on Computational Intelligent 

Techniques 
Redial Basis Function (RBF) 

The weights from the input to hidden layer is determined by computing the distance (di) between the 

input vector x and the center of basis function ci as shown in equations below. 

 

Where 𝜑I is Gaussian function for each node at hidden layer, σ is spread or width for each node in hidden 

layer. 

 

Where yik is output, Wik is weights between hidden layer and output layer. 
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Particle Swarm Optimization (PSO) 

In PSO each particle in population is reckoned as a solution that algorithm works on finding optimal values 

to find the global minimum. Each particle changes its velocity and its position according to equations 

below: 

 

Where W represent inertia weight, Vi(t+1) represent new velocity of particle i in next iteration, Vi 

represents velocity of particle i, t represents an iteration number c1 , c2 , represent the learning rate for 

individual (local) and group (Global)r1, r2 are random values have values between [0-1], xi represents the 

current position of particle i, Pi symbolize the local best for particle i, and Pg represent the global best for 

the swarm. 

 

Where Xi(t+1) represent the new position at next iteration. On each iteration of the algorithm the current 

position considers as solution and if that position better than the previous according to its value of fitness 

function which has a minimum value (minimize problem), that position considers Pbest. The flowchart 

below Figure A.10 describes the steps of the proposed model. 

 

Figure A.10: ANN flowchart  
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Reference Hardware Description Use Price 

Basha, et 

al. 

ARM7TDMI-S 

(LPC2148 

processor) 

Microcontroller (base 

board) 

Used for all nodes. Provides 

necessary computation 

power. 

$15.15 (ebay) 

Basha, et 

al. 

Xilinx 

CoolRunner-II 

CPLD 

Physical serial port 

module (daughter 

board) 

Connect to microcontroller 

to extend serial ports by 8. 

Provides IO operations and 

mini-SD card and FRAM to 

supply data and 

configuration storage. 

$3.02 (ebay) 

Guesmi 
CompactRIO 

Chassis 

Base board for 

collection of I/O 

modules 

Acts as the network 

coordinator, responsible for 

configuring all distributed 

nodes and collecting 

measured data from all of 

them. 

Starting from $ 

748.00 (ni.com) 

Shipping to 

Mauritius N/A 

Table A.1: Base System 

 

Reference Hardware Description Use Price 

Basha, et 

al. 
AC4790 

900 MHz wireless 

module. Operates at a 

fixed data rate, 

optimally 76.5 kb/s 

but dropping to 

approximately 500 b/s 

once the internal 

Aerocomm messaging 

overhead is 

considered. 

Used by all nodes. Provides 

RF, interface, protocols, 

handling issues such as 

retries, error detection, and 

peer-to-peer 

communication. 

$39.99 + $47.00 

Shipping. 

USED (ebay) 

Basha, et 

al. 

Kenwood 

TM271A 

144 MHz voice 

communication VHF 

radio 

Used by small subset of 

nodes. Allows cheap long-

range communication. 

$219.99 + $5.00 

Shipping (ebay) 

Basha, et 

al. 
MX614 Bell 202 Convert 1200 baud 

serial signal to FSK 

Modem to allow data 

communication to Kenwood 

TM271A. 

$5.66 + $4.00 

Shipping (ebay) 
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signal for radio 

transmission.  

Guesmi WSN-3202 
Analog Input Node for 

WSN 

Measures analog input 

signals and performs digital 

I/O at an outdoor range up 

to 300 m. 

Starting from $ 

734.00 (ni.com) 

Shipping to 

Mauritius N/A 

Guesmi WSN-3230 
Serial Interface Node 

for WSN 

Provides one RS232 port to 

interface with serial sensors, 

instruments, and control 

boards. 

Starting from $ 

718.00 (ni.com) 

Shipping to 

Mauritius N/A 

Guesmi NI-9795 
Wireless Gateway 

Module 

Connects to the CompactRIO 

chassis. Collects data from 

WSN nodes. 

Starting from $ 

568.00 (ni.com) 

Shipping to 

Mauritius N/A 

Table 15: Communication Hardware 

 

Reference Hardware Description Use Price 

Basha, et 

al. 

RS485 and 

RS232 circuits 
 Communication 

For external communication 

to sensors if complicated 

interface is required. 

$2.10 and 

$1.22(ebay) 

Basha, et 

al. 

Reed magnetic 

switches 

Rainfall sensor. 

Measure by causing an 

interrupt after every 1 

mm of rainfall. 

Measure rainfall. 
$0.99 (ebay) + 

Rain bucket 

Basha, et 

al. 

Resistive 

Temperature 

sensor 

 Measure temperature. $1.95 (ebay) 

Basha, et 

al. 

Honeywell 

24PCDFA6A 
Water pressure sensor. Measure water level. 

$12.99. 

Shipping not 

specified (ebay) 

Guesmi WSN-3212 
Thermocouple Input 

Node for WSN 
Telemetered sensors. 

Starting from $ 

718.00 (ni.com) 

Shipping to 

Mauritius N/A 

Table A.3: Sensing Nodes 
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link Hardware Description Use Price 

Arduino 

UNO 

 

Arduino UNO 
Microcontroller 

(base board) 

Operate sensors I/O. Do 

basic computation. 1 for 

each sensors’ nodes 

$4.15 

Arduino 

MEGA 

 

Arduino MEGA 

Microcontroller 

(base board) 

Have more I/O ports 

than Arduino UNO 

Operate sensors I/O. Do 

basic computation. 1 for 

each sensors’ nodes 

$8.33 

Raspberry 

Pi3B 

 

Raspberry Pi 3B 

Low cost, credit-card 

sized computer. Can 

connect to the 

internet, do complex 

computation. Have 

sensors I/O ports.  

Acts as the network 

coordinator, responsible 

for configuring all 

distributed nodes, 

collecting measured data 

from all of them and 

sending the data to an 

online server. 

$42.75 

Table 16: Base Station 

Link Hardware Description Use Price 

WIFI 

Transceiver 

module 

 

ESP8266 ESP-01 

Serial WIFI Wireless 

Transceiver Module 

802.11 b/g/n. 

Standby power 

consumption of < 

1.0mW. Range: 

300m line-of-sight. 

Can be used by all close-

range sensor nodes. 

Provides and peer-to-peer 

communication. 

$1.98 

2.4G 

Wireless 

Transceiver 

module 

 

NRF24L01+PA+LNA 

SMA Antenna 

Wireless 

Transceiver module 

2.4GHz band 

frequency. Max 

Current: 115mA. 

Range: 1000m line-

of-sight, 270m in 

forest. 

Can be used to transfer 

data from 1 nodes to 

another. Provides and 

peer-to-peer 

communication. 

$2.53 

433Mhz 

HC-12 

 

HC-12 Wireless 

Serial Port Module 

433MHz band. 

Transmitting power: 

0.79-100mW. 

Can be used to transfer 

data from 1 nodes to 

another close or long 

range. Provides and peer-

to-peer communication. 

$3.55 

https://www.ebay.com/itm/NEW-UNO-R3-ATmega328P-CH340-Mini-USB-Board-for-Compatible-Arduino/311155383820?epid=838665863&hash=item48724e5e0c:g:UswAAOSwNnRYfC0R
https://www.ebay.com/itm/NEW-UNO-R3-ATmega328P-CH340-Mini-USB-Board-for-Compatible-Arduino/311155383820?epid=838665863&hash=item48724e5e0c:g:UswAAOSwNnRYfC0R
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/MEGA-2560-R3-ATMEGA16U2-ATMEGA2560-16AU-Board-USB-Cable-For-Arduino-Module/253687926261?epid=18019991810&hash=item3b10fa8df5:g:mEYAAOSwrQRZroII
https://www.ebay.com/itm/Raspberry-Pi-3-Model-B-Quad-Core-1-2GHz-64bit-CPU-1GB-RAM-WiFi-Bluetooth-4-1/141136387726?epid=1665704670&hash=item20dc625e8e:g:WkMAAOSwBnVW-foz
https://www.ebay.com/itm/Raspberry-Pi-3-Model-B-Quad-Core-1-2GHz-64bit-CPU-1GB-RAM-WiFi-Bluetooth-4-1/141136387726?epid=1665704670&hash=item20dc625e8e:g:WkMAAOSwBnVW-foz
https://www.ebay.com/itm/ESP8266-ESP-01-Serial-WIFI-Wireless-Transceiver-Module-Send-Receive-LWIP-AP-STA/201501780189?epid=25019248459&hash=item2eea7128dd:g:p60AAOSw5dlaKiRb
https://www.ebay.com/itm/ESP8266-ESP-01-Serial-WIFI-Wireless-Transceiver-Module-Send-Receive-LWIP-AP-STA/201501780189?epid=25019248459&hash=item2eea7128dd:g:p60AAOSw5dlaKiRb
https://www.ebay.com/itm/ESP8266-ESP-01-Serial-WIFI-Wireless-Transceiver-Module-Send-Receive-LWIP-AP-STA/201501780189?epid=25019248459&hash=item2eea7128dd:g:p60AAOSw5dlaKiRb
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/NRF24L01-PA-LNA-SMA-Antenna-Wireless-Transceiver-communication-module-2-4G-1100m/310651702557?epid=1939169401&hash=item485448cd1d:g:Dm0AAOSwzJ5XfLKS
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
https://www.ebay.com/itm/433Mhz-HC-12-SI4463-Wireless-Serial-Port-Module-1000m-Replace-Bluetooth-TOP/401051275954?epid=3017319258&hash=item5d6084d2b2:g:JawAAOSwMHdXS9OD
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Max range: 600-

1800m 

 

GSM 

module 

 

SIM900 

850/900/1800/1900 

MHz GPRS/GSM 

Class 4 (2 W @ 850 / 

900 MHz) 

Class 1 (1 W @ 1800 

/ 1900MHz) 

Low power 

consumption - 

1.5mA(sleep mode) 

Embedded TCP/UDP 

stack - allows you to 

upload data to a web 

server. 

Can be used to allow 

communication between 

very far apart nodes. 

Upload sensed data to 

server. 

$13.70 

4G module 

 

SIM7000E 2G 3G 4G 

GSM GPRS Module 

Output power 

  - GSM900:  2W 

  - DCS1800: 1W 

Can be used to allow 

communication between 

very far apart nodes. 

Upload sensed data to 

server. 

$47.83 

Table 17: Communication Hardware 

 

link Hardware Description Use Price 

Pressure 

sensor 

 

Gravity: Analog 

Water Pressure 

Sensor 

Water pressure is 

converted into water 

level. 

Measure river water level $12.90 

Barometric 

Pressure 

sensor 

 

Barometric 

Pressure Sensor 

Module 

Measure water level 

by measuring air 

pressure in a tube 

with one end in the 

river and the other 

end connected to 

the sensor. 

Measure river water level $4.29 

Water 

pressure 

sensor 

 

MS554 MS5540-

CM 

Water pressure is 

converted into water 

level. 

Measure river water level $19.87 

https://www.ebay.com/itm/SIM900-850-900-1800-1900-MHz-GPRS-GSM-Development-Board-Module-Kit-For-Arduino/263106376867?hash=item3d425cb4a3:g:wJMAAOSwzXBZhuns
https://www.ebay.com/itm/SIM900-850-900-1800-1900-MHz-GPRS-GSM-Development-Board-Module-Kit-For-Arduino/263106376867?hash=item3d425cb4a3:g:wJMAAOSwzXBZhuns
https://www.ebay.com/itm/SIM7000E-2G-3G-4G-GSM-GPRS-Module-GPS-USB-UART-Serial-for-Arduino-IOT-5V-10V/222999329880?hash=item33ebcbbc58:g:wTUAAOSwT4Za7ANo
https://www.dfrobot.com/product-1675.html
https://www.dfrobot.com/product-1675.html
https://www.ebay.com/itm/Digital-Barometric-Pressure-Sensor-Module-Liquid-Water-Level-Controller-PC-Lot/372183791397?hash=item56a7e1f725:m:mXnGuESKlI4P1RkoTpWYixw
https://www.ebay.com/itm/Digital-Barometric-Pressure-Sensor-Module-Liquid-Water-Level-Controller-PC-Lot/372183791397?hash=item56a7e1f725:m:mXnGuESKlI4P1RkoTpWYixw
https://www.ebay.com/itm/Digital-Barometric-Pressure-Sensor-Module-Liquid-Water-Level-Controller-PC-Lot/372183791397?hash=item56a7e1f725:m:mXnGuESKlI4P1RkoTpWYixw
https://www.ebay.com/itm/Digital-pressure-sensor-MS554-MS5540-CM-waterproof-module-100-meters-water/262474804889?hash=item3d1cb7ae99:g:KXoAAOSw9eVXV-3D
https://www.ebay.com/itm/Digital-pressure-sensor-MS554-MS5540-CM-waterproof-module-100-meters-water/262474804889?hash=item3d1cb7ae99:g:KXoAAOSw9eVXV-3D
https://www.ebay.com/itm/Digital-pressure-sensor-MS554-MS5540-CM-waterproof-module-100-meters-water/262474804889?hash=item3d1cb7ae99:g:KXoAAOSw9eVXV-3D
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Barometric 

pressure 

sensor 

 

GY68 BMP180 

Measure water level 

by measuring air 

pressure in pipe 

submerged in water 

with the sensor in. 

Measure river water level 
$1.22 

 

Ultrasonic 

sensor 

 

HC-SR04 Distance 

Sensor 

Measure the 

distance between 

the sensor and the 

water surface. 

 

 

 

Measure river water level 

 

 

 

$0.99 

DHT22 

 
DHT22 

Temperature and 

Humidity Sensor 

Accuracy 

resolution:0.1. 

Humidity range:0-

100%RH. 

Temperature range:-

40~80℃. 

Humidity 

measurement 

precision:±2%RH. 

Temperature 

measurement 

precision:±0.5℃ 

Temperature and 

Humidity 
$3.16 

AcuRite AcuRite 06014 PRO 

5-in-1 Weather 

Sensor with Rain 

Gauge, Wind Speed, 

Wind Direction, 

Temperature and 

Humidity 

Rain Gauge, Wind Speed, 

Wind Direction, 

Temperature and 

Humidity 

$85.87 

Table 18: Sensors 

 

https://www.ebay.com/itm/GY68-BMP180-Replace-BMP085-Digital-Barometric-Pressure-Sensor-Board-Arduino/200915895472?epid=624380188&hash=item2ec78544b0:g:8zgAAOSwvR5Z~~7Z
https://www.ebay.com/itm/GY68-BMP180-Replace-BMP085-Digital-Barometric-Pressure-Sensor-Board-Arduino/200915895472?epid=624380188&hash=item2ec78544b0:g:8zgAAOSwvR5Z~~7Z
https://www.ebay.com/itm/GY68-BMP180-Replace-BMP085-Digital-Barometric-Pressure-Sensor-Board-Arduino/200915895472?epid=624380188&hash=item2ec78544b0:g:8zgAAOSwvR5Z~~7Z
https://www.ebay.com/itm/Arduino-Ultrasonic-Module-HC-SR04-Distance-Sensor-Measuring-Transducer/182004246907?hash=item2a604c697b:g:MrUAAOSwvjBbD5KX
https://www.ebay.com/itm/Arduino-Ultrasonic-Module-HC-SR04-Distance-Sensor-Measuring-Transducer/182004246907?hash=item2a604c697b:g:MrUAAOSwvjBbD5KX
https://www.ebay.com/itm/1pcs-DHT22-AM2302-Digital-Temperature-And-Humidity-Sensor-Replace-SHT15/171907229178?hash=item28067825fa:g:U5wAAOSw8nxbA-Ti
https://www.amazon.com/AcuRite-Weather-Direction-Temperature-Humidity/dp/B00SN1WHEU/ref=sr_1_5?ie=UTF8&qid=1528747245&sr=8-5&keywords=rain+gauge+sensor
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Installation Procedures 
The steps below show how to install TensorFlow with GPU support (NVIDIA GPU only), Keras API and 

prerequisites for Windows 10 operating system. 

Step 1: Requirements to run TensorFlow with GPU support 

The following NVIDIA software must be installed on your system: 

• CUDA® Toolkit 9.0. For details, see NVIDIA's documentation. Ensure that you append the relevant 

Cuda pathnames to the %PATH% environment variable as described in the NVIDIA 

documentation. 

• The NVIDIA drivers associated with CUDA Toolkit 9.0. 

• cuDNN v7.0. For details, see NVIDIA's documentation. Note that cuDNN is typically installed in a 

different location from the other CUDA DLLs. Ensure that you add the directory where you 

installed the cuDNN DLL to your %PATH% environment variable. 

• GPU card with CUDA Compute Capability 3.0 or higher for building from source and 3.5 or higher 

for our binaries. See NVIDIA documentation for a list of supported GPU cards. 

 

Step 2:  Install python 3 

TensorFlow supports Python 3.5.x and 3.6.x on Windows. 

Python 3.6.x 64-bit from python.org  

 

Step 3: Install tensorflow-gpu 

To install TensorFlow with GPU support, run Command Prompt as administrator and enter the following 

command: 

C:\WINDOWS\system32> cd C:/ 

C:\> pip3 install --upgrade tensorflow-gpu 

 

Step 4: Install Keras 

To install Keras API, run Command Prompt as administrator and enter the following command: 

C:\WINDOWS\system32> cd C:/ 

C:\> pip install keras 

 

Step 5: Prerequisites 

Install Scikit-Learn python package: 

C:\> pip install -U sklearn 

 

Install Pandas python package: 

C:\> pip install pandas 

http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/
https://developer.nvidia.com/cudnn
file:///D:/work/FlashFloodProject/NVIDIA%20documentation
https://www.python.org/downloads/release/python-362/
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Install matplotlib python package: 

C:\> pip install matplotlib 

Install numpy python package: 

C:\> pip install numpy 

 


