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1 Abstract

We describe a new Riemann solver that is incorporated in the Least Squares Finite Differ-
ence Scheme which is a strong form of meshless method. We present 3 types of schemes,
namely, the first order Riemann Least Squares Finite Difference Scheme (RLSFD), the con-
servative form of the RLSFD scheme and the second order Riemann Least Squares finite
difference scheme. We then prove that the first order RLSFD is consistent with the linear
advection equation and that it is conditionally stable. We also prove the existence of a
weak solution for the first order RLSFD. Finally, we present our numerical results when
the RLSFD is applied to the 1-D linear advection equation, 1-D Burgers equation, the
Shock tube problem, the 2-D Riemann problem and to some two phase flow problems.

2 Introduction

In this report, we describe a new Riemann solver that is incorporated in the Least Squares
Finite Difference Scheme which is a strong form of meshless method. In the recent years,
the Godunov type methods have been succesfully applied for the inviscid compressible
flows problem. Godunov type scheme is characterized by theirs robutness in calculating
flow with very complicated shock structures. Godunovs method is an extension of the
classical Courant-Isaacson-Rees scheme (Harten et al. 1983). A Second order extension of
Godunov type method was made by Van Leer (1979) and further development was made
in this field of research. The disadvantage of Godunov’s method is the difficulty of solv-
ing nonlinear Riemann problem exactly which leads to a complex and time-comsuming
numerical codes. To overcome these drawback, approxaimate Riemann solver have been
developed. Some known approximate Riemann solver are Osher & Solomon (1982), Roe
(1981) and the PPM scheme by Woodward & Colella (1984). These scheme are less costly
than the exact Riemann solver. A meshless method is a method used to establish system
algebraic equations for the whole problem domain without the use of a predefined mesh for
the domain discretization. It uses a set of nodes scattered within the problem domain as
well as sets of nodes scattered on the boundaries of the domain to represent the problem
domain and its boundaries. Meshless methods are relatively new and are not mature as
mesh based method including finite difference, finite element and finite volume. The ad-
vantage of meshless methods is that they provide solution accuracies for certain classes of
equations that rival those of finite elements and boundary elements, without requiring the
need for mesh connectivity. Meshless also requires no domain or surface discretization or
numerical integration. Alternatively, a meshless method is not restricted to dimensional
limitations. Meshless method doesnot capture shock as good as a Godonuv-type scheme.
Therefore we incorporated a Riemann solver into the meshless scheme to capture shock
and contact discontinuities more accurately.

This report is organized as follows, in section 2 we introduce the Riemann Least squares
finite difference scheme for an advection equation. We present 3 types of schemes, the first
order Riemann Least Squares Finite Difference Scheme (RLSFD) , the conservative form of



the RLSFD scheme and the second order Riemann Least Squares finite difference scheme.
In section 3 we present the second order Least squares finite difference and extended it to
a second order RLSFD scheme. In section 4, we present the proof of the weak solution of
the scheme and the stability analysis of the scheme. In section 5, the RLSFD is extended
in 2 dimension by applying to VOF method and a 2-D Riemann problem.

3 The Riemann Least Squares Finite Difference Scheme

(RLSFD)

We consider a 1-d Linear Advection Equation given by:
ou L ou
S aq— =
ot ox
Using the Least squares technique, we obtain a 1% order approximation of the spatial
derivative of z as

0. (1)

% i=1

e i Am? |
i=1

Using Eq.(2), we solve the local Riemann problem within each connectivity of each node
of the computational domain in the form

2)

S wi(Ax) —x =0, (3)

with jump Z Az;Au;.
i=1

We assign a weight w; to each (Az;)? on the supporting nodes in each connectivity so
n

that Z w;(Az;)? is approximated to the speed of the exact solution. For the linear advec-
i=1
tion equation given by Eq.(1) the speed is a.
n
In each connectivity, we consider a jump Z Az;Au; which we split as a linear combina-
i=1
tion of AU’s taken as the difference in U from two adjacent nodes within the connectivity.
Thus, with a given connectivity shown in Figure 3 , we get

ZAﬂJiAUi = Xi—3(Ui—a — Ui—s) + Xiea(Ui—1 — Ui_a) + X1 (U; — Ui1)
i=1

+ Ait1(Uit1 — Us) + Air2(Uire — Ui1) + Xig3(Uizs — Uiga).  (4)



Following the idea of Godunov (Toro & Toro (1999)), we assume that the jump in the
solution is constant between 2 nodes within the connectivity. This is illustrated in Figure
3.

Thus, for the connectivity shown in the figure,

[xm—lazm] — /\m—l(Um - m—-l) if m S 7:7
[.'L'm,.’l:m+1] —> Am—{-l(Um-l—l - Um) if m Z 1.

Eq.(4) is solved subject to the constraint A;_g + Ai—a + Xi—1 + Aip1 + Aip2 + Aipg = 1.
By comparing the coefficient of A in Eq.(4) we obtain the following system of equation

Ai_lAUi = )\1AU1 = A.’BzAUz ¢ = m,---,N,
and MAU, = Az,AU,.

We then minimize the following function :

f= ()\i—3AUi—3 - AiEi—sAUi—s)Z &5 ()\i—sﬁUi—z — Ni2AU;_9 — Ami—2AUi—2)2+
()\i_gAU'_l - Ai—lAU'—l - A$i_1AUi_1)2 -+ (/\i+1AUi+1 - )\1;_|.2AU7;+1 - A:Bi+1AUi_|_1)2+
(Air2QAUirz — Aiy3AUsrz — Azi2AUsp2)? + (Nip3AUirs — Azi3AUs3)?,  (5)

subject to the constraint A\;_3 + A\j_2 + A\i_1 + Aip1 + dige + Aips = 1.

For each connectivity we have to compute the values of A;_3, A\i_2, Ai—1, Adix1, Aiy2, Aiys and
then sum all the jumps in their respective cell.



Split the jump of connectivity p(z;)

Aix3(Uirs — Uisa)
Aic1(Ui — Ui1) Aiv2(Uirz — Uir1)
Ai2(Uiz1 — Uip)
Ai—3(Uiz = Ui—3) Aip1 (Ui — Us)

Figure 1: Split a jump in a connectivity

We denote the values of A in the connectivity of the i** node as follows:
)‘(1)37 )‘51)27 /\Ez)lv )‘H—l’ )‘522’ )‘523 (6)

For a connectivity with 6 supporting nodes, there will be a maximum of 6 overlapping of
jumps with the cell (%;_1,z;). The jumps in solution in cells (z;_1, z;) is denoted by D;_;
and it is given by

Dis1 = A 4282 4 A8 108 40D 128N, - ULy, (7)
Correspondingly, D; is the jump in (z;, z; + 1) and it is given by
Di = (R + X507+ A + X7 4 AN W, - 1), (8)

provided aAt < Ax;.

Then we advect the sum of jumps in the solution with the speed Zwi(A.’ci)2 which is

i=1
equivalent to solving a Riemann problem given by Eq.(3).
At
Ur—2=(D;)  a<0,
1 a
i D;
Ul ALEI( 1) a>0



Eq.(9) holds provided aAt < Ax;.

Here the X's of the Riemann Least squares Finite difference scheme are optimised and
guarantee its meshlessness over the connectivity. We also propose a conservative form of
the Riemann Least Squares Finite Difference scheme. In this scheme instead of optimising
the system of Eq. (5), we force the sum of jumps in a connectivity to equal to a(Us3—Us;—3).
In the next subsection, we give an overview of the conservative form of the Riemann Least
Squares Finite Difference scheme.

3.1 The Conservative form of the Riemann Least Squares Finite
Difference scheme

We derive a conservative form of the RLSFD. Consider a 1-d linear advection equation

ou ou
% + aa—z— =0. (10)

Using the Least squares technique on the linear advection equation, we obtain an approxi-
mation of the spatial derivative of x as

% _ =1

oz 2”: Az
i=1

Using Eq (11), we consider solving a local Riemann problem at each connectivity of the
domain in the form:

(11)

ou 20u
—— Z’wi(AﬂCi) 9 0, (12)

n
with jump Z Az; Ay
=1
For conservation the jumps must satisfies the following equation:

AUz = Uiis) + A2, (Ui — UiLg) + X2, (Us = Uiy) + A9, (Usr — Us)
+ A Uiz = Uss) + My (Usss — Usya) = a(Usys — Uss), (13)
where « is a constant, ,\gi_ﬂk, for £ = 1,2, 3 represent the coefficient of the difference in so-

lution between adjacent nodes within the connectivity of the i** node of the computational
domain.

Solving Eq.(13) yields the following system of equation :
A= )‘n = 07

)‘i_/\i+1 = 0. ’L.=m,"',’l’L—1,



k=3
subject to Z Ai+r = 1. This is equivalent to the minimization of

k=1
fo = Aipz—Aima) 2+ (Nimz—Ai2) 2+ (Nima— A1) 2+ (Nic1 = A1) 2+ Qirr—Air2) 2+ (Aira—Airs)?
(14)
k=3
subject to Z Aivk = 1.
k=1

The function f; is convex since it is Hessian positive semi-definite. Hence, it has a unique
minimum in R, when V.f = 0. Solving the latter equation, we get A\i_3 = A\iy3, Ai_a =

Air3,  Aic1 = Aig3,  Air1 = Aig3, A2 = Agz and A3 = Agy3 , subject to the con-
k=3

straint Z Aivke = 1.
k=-3

1
The solution is given \; 1 = 5’ for k& =41, 42, £3.

After obtaining the value of A at each connectivity, we sum the jumps in the solution,

Dioy = (AF Y 420 4 A8 120, 2D 4 2AEF)\U; - Uiny), (15)
and _ _ _ . _ _
Dy = MG 280 1 0@ A LG AL — U, (16)

with the connectivity of each i** node of the domain.

Hence, we obtain the following Riemann problem :

. D;_1 if Ti1 < T < T,
The solution at the ** node is then
At
Ur — Z—(Dz—) a <0,
Uz‘nH = a,Axi UE)
ur — D;_ 0
7 A’El( 1) a>

Eq.(18) holds provided aAt < Az;.

4 Second Order Riemann Least Squares

The RLSFD scheme can be extended to a second order approach same as the second order
Least Squares Finite Difference scheme using a modified difference. In this section, we
introduce an overview of the Second order Least Squares Finite Difference scheme first. A



second order of LSFD scheme is derived on a linear advection equation. We start by using
a taylor expansion of the supporting nodes

Az;
Ui = %+A@U+(;)%m (19)

Using the least squares method we obtain the spatial derivatives of z which is denoted as
the first step

> Az AU;
U (1 1_—. (21)
Z Ax?
Here Uz(0 is first order accurate. We define a new variable
~ Az;
Am=Am—7;Awﬂ (22)
where AU, = él) — _,,%)
We define a 2 step formula for the spatial derivatives of x as
E:A@A@
U, (2) ——. (23)

ZA:U

To be able to calculate the second step formula we must first calculate the first step formula
given by Eq (21).

The 2 step second order formula is second order accurate.

Proof 5
The truncation error of AU;

. Az;

AU; = AU == — AU, (24)
Az; Az; Az;
= A'EzUzz:o + ( ; ) Uzzo - 2 (A U;z;;z;o + ( ; ) U:C:I:J:o) ) (25)
)3
= AIEiUzo = (A;L)—‘szzo (26)



The 2 step second order formula is

Az; AU,
1

v = = , (27)

n
E Aa;f
i=1

n

23
Z (Aa)iUzg - _(A;z) U:z:a::z:o) A"E’L
= = n ) (28)
Z Az?
=1
Z AiL‘i4
i=1

4271: A$i4
=1

= U, + O(Az?). (30)

- Ux Uz:m:m (29)

We show that it is a second order accurate and we have eliminated the dissipative term
U,z which will reduce the dissipation of the solution.

4.1 Second order Riemann LFSD scheme for a linear advection

We consider a linear advection equation

ou ou
- — =0. 31
o %9 0 3L
Solving Eq (31) by using a 2 step second order formula we obtain the spatial derivatives as

X as
n

> Az AT;

ou i=1
M= (32)
>
i=1
- A
where AU; = AU; - —*AUD.
Next, in each connectivity we solve a riemann problem given by Eq (33).
ou < 50U

10



with jump Z Az; AU,
i=1

Next, for each connectivity we split the jump into jumps in the solution in each cell as

Z A:EZA(Z — /\7;_3(A01'_2 - Aﬁi_‘g) + /\i_Q(Aﬁi_l - Aﬁi_z) + )\i—l(_AUi—l)

i=1

+ i1 (AUs1) + Nig2(AUia — AUs1) + Niga(AUsis — AUsya), (34)
. Az;
where AU; = AU; — TJ;AUQ(:}) and \;_3+ A2+ X1+ XAig1 + Aig2 + Aiy3 = 1. Thisis a
minimizing process subject to a constraint. For conservation of jumps we obtain the value

1
of Ai—3 = Aji—2 = Ai—1 = Ajt1 = Aige = Ajp3 = 6 for 6 supporting nodes.

Having found the values of A for each connectivity we sum the jump as a jumpof the
solution w.r.t to U; to be constant in their respective cells. We denote D;_; to be the sum
of jump of the solution in cell (z;_1,z;) and D; in the cell (z;, z;11).

Dioy= (T4 AT AT A A IO - i), (39)

and
D= (A8 42850 + 29, + a8 1 A8 L YOy, - T, (36)

provided aAt < Ax;.

The scheme becomes

n+1 n G’At :
ntl _ e _ D) if :
U U; Axi( 1) ifa<0 (37)
ntl _ aAt DY i
Ui U, Ami( ;) ifa>0. (38)

Eq (37) and (38) hold provided aAt < Az;.

For the second order approach of the RLSFD scheme, the truncation error can be further
minimized by optimising the value of \;; for each connectivity. We analyze the solution set
of X's for the optimised problem. Without any loss of generality , we consider a connectivity
of six supporting nodes . For the Riemann Least Squares Finite difference scheme, at each
reference node j we split the jump which is given by

i=j+3 5
(Z Am,-AUi> , (39)
J

i=j—3

where AU; = AU; — %AUS) , throughout the connectivity in each cell of the connectivity.
For example, for a reference node j we obtain the first order derivatives as an approximation

il



of

j+2 J+2
( Z /\], + ZAJ 17,) Ux] + Z /\_7, - II?]') + Z Aj—l,i(xi - .’L’j) U:z::):_.,"'
1=3—-3 =7 i=7—3 i=j+1

(D Xa(2m: — i1 — 25) (@i — 25) — Nj—vj(®jm1 — 25)>+

i=j—3
Jj+2
Z Aj—l,i(xj—l + Z; — 2.’Ei)($]‘_1 — xz))Umz] (40)
i=j+1

We can choose the value of )\ in each connectivity throughout the whole computational
mesh so that it become second order . To achieve this we have to use optimization. This
is equivalent to minimizing a set of objective functions subject to a set of constraint . This
is given by a multi-objective function as

min{Fl(X):"'ij(X)a""Fn(X)}a (41)
j+3
where F;(X) = Z Aij — 1, and the set of constraint S is given by
=j—3
igéj
1.
j+2
ZAN+ZAJ =1, forj=1,---,n (42)
1=7—3
2.
Jj—1 j+2
Z )\j,i(xi = IE]') + Z )\j—l,i(xi - £L'j) =0 fOI’j = ]., R (1 (43)
i=j—3 i=j+1
3.
j—2 Jj+2
> X2 =) (@i—5)~ N (@5oa—2) P+ Y Njo1i(@o+a—2:) (51— )
i=j—3 i=j+1

— V(T — 2j-1)? = Ya(zi —25) =0, forj=1,---,n. (44)
where n is the number of nodes in the computational domain.

By using the e—constraints method , we choose one objective out of n to be minimized and
the remaining objectives are constrained to be less than or equal to given target values. By
using the following theorem we can show that there exist a weak Pareto optimum.

If an objective j and a vector € = (€, , €j—1,€j41," - ,€,) € R™1 exist, such that z* is
an optimal solution to the following problem :

min Fj(z), (45)

12



subject to the constraint
Fi(z) <eVi €{1,---,n}\{j} (46)
x €S,

then z* is a weak Pareto optimum.

j+3
The objective function F;(X) = Z Aij — 1 is linear and therefore convex and the con-
i=j—3
i#]
straint Fj(z) < ¢ Vi € {1,---,n}\{j} is also convex. The set of constraints S is convex

since each constraint is linear.

5 Weak solution of the RLSFD

We show that the Riemann LSFD converge to the weak solution of the conservation law:

du  9f(w)

ot oz

=0 (47)

Theorem: Lax and Wendroff (LeVeque (2002))

Consider a sequences of grids indexed by j = 1,2, ..., with mesh parameter AtY), Azl — 0
as j — oo. Let UY)(z, t) denote the numerical approximation computed with a conservative
method on the j* grid. Suppose that ) converges to a function u as 5 — oo, in the
sense made precise below. Then u(z,t) is a weak solution of the conservation law.

We assume the following conditions:

1. Over every bounded set Q = [a,b] x [0, T] in z — ¢ space, ||[UD) —u||, o — 0 as j — oco.

2. For each T there is an R > 0 such that TV(UY(.,t)) < Rforall0< ¢t < T,j = 1,2, ...,
where TV denotes the total variation function.

In order to use the Lax and Wendroff theorem we must prove that the Riemann LSEFD
scheme satisfies the 2 assumptions given above.
First we prove that our scheme is consistent in 1-norm to satisfy assumption 1.

NUP* — u(al, tasa)ll = [JUPF — (@i, tnsa) ] (48)
YA\ n n
= ||Uf - A—x_'ri(Ui — U%q) — u(@i, trr1)l] (49)

13



where 7 = AZ™ + A8 £ 28V 10, 4 AHD 4 2ED),

al\t

= |Ju(zi, tn) — YL [w(zi,tn) — u(Tio1, tn)] — u(@s, tnia)|| (50)
al\t

= |Ju(zi, tn) — A—mﬁ(u(l‘iatn) — (T, tn)) — [w(®s, tn) + Atug (24, )]

= ||u(zs, tn) — %Ti[u(m,tn) — u(Zi, tn) + Azug(z;, tn)] — [ul®i, tn) + Atug(zi, )]

= ||Atug (s, t) + Atryug(xi, t0)]| (51)

as At = 0 ||Atug(zi, tn) + aAtriug(zs, t,)|| = 0.
We show that ||[UY) — u||;q — 0.

Next we show that the scheme is TVB that is, it satisfies assumption 2 .

TRy = Y 0P - U (52
= 3 o= o - v - - S 0r, - U
— 2 (1_"’—N NOP = UZ,| + AN ULy — Uil
< 1_“_% an— na+ TZIUZH s
_ TV(U”)—Z—MTTV(U”) %MTV(Un) (53)

t
since 0 < _aA <1 and 7 > 0 then
Az

TV(U™) < TV(U™)

V(U™ < TV (U9

. Therefore the scheme is TVB and hence using the Theorem of Lax and Wendroff, u(z, t)
obtained by RLSFD is a weak solution of Eq (47).

The Riemann LSFD is a Reconstruction-Evolution-Average algorithm. The Reconstruc-
tion phase consist of the splitting of the jump ) Axz;AU; over the connectivity. Whilst the
Evolution phase is the evaluation of the flux at the interface of each interval. Next we show
that the weak solution u(z,t) obtained as the limits of U) satisfies the entropy condition

14



which can be written as follows:

where 7(q) is a convex scalar entropy function and ¥(q) is the entropy flux.

In weak sense, that is, V¢ € CiVz,t € R, we have

/Ooo /_°° [e(z, )n(a(z, 1)) + ¢u(z, ) (q(z, )]dz dt + /_ N ¢(z,0)n(q(z,0))dz > 0. (55)

It is sufficient to show that a discrete entropy inequality holds

n(QF) < n(Q7) - —(‘1’2+1 1) (56)
Integrate Eq.( 54), we obtain
zi+% mi+% tnt1 tnt+1
[ atatetwedn < [ atatatado+ [ wlate it = [ wlata )i
:l:i_% li_% tn tn
(57)
since g is constant on the right hand side of Eq.( 57) dividing by Az yields
1 [ A, n
az | et < (@) - (0 L) (58)
=2
since the entropy function 7 is convex we can use Jensen'’s inequality
1 [T+ 1 [Ti+d
APy AT By B LS (59)
-2
This yields
MQEH) < (@) — S (Whyy — V2. (60)

This satisfies the discrete entropy inequality.

We also proved that the RLSFD scheme with jumps is consistent with the linear advection
equation. We show that the scheme

g—z + 2 w;(Az;)? 3 ZA:L A, (61)
is consistent with 5 5
i i
e +a 0:6 =0. (62)

15



Proof
Taking lim of Eq (61) we obtain
Az;—0

ou , =

N —l—Al;in_l)O 5_ wi(Axl = Alggo g Az;Au; (63)

@—l-— lim E w;(Az;)* = lim g Az;Au; (64)
0T Ax;—0 4 ’ ¢ Az;—0 ¢ ¢

We choose w; such that Z w;(Az;)* = a

i=1

ou ou .
% = a2 Al ) (65)
ou (A.’I;i)2 o%u

= A&EOZ Az;(ug + Axla 5 92 Up) (66)
o s Ale)* P
N AI;EOZA zi) Azl—mz 2 0z% (67)

Oou 2u

We assume that . and — 2 is bounded then
ou  Ou ) A(z;)?
Mvalt = S im S AEP+ 5 m 3 20 (68)
= 0. (69)

The RLSFD scheme is said to be stable iff it satisfies the CFL condition. The scheme for
a > 0 becomes A
a

A.’L‘i
where D;_y = (AF™) £ 2072 1 26D L A0 L AED LAY @, — Uy,

Ut = U — — (D), (70)

It becomes
UMttt = Ul —a(Uf - Uy) (71)
(1—-a)Ul+ U, (72)
AL |\ (i-3) | \(=2) | \(-1) O 4 D 4 3042
wherea=A—$_()\i + AN EN ENT ).
For stability we require
1 —a|+|a <1 (73)

16



Proof

Z |Uin+1|2

1=—00

(1 — &)U + U4 |

M8

-,
Il

—0o0

INA

> (1= aP|Up)? + 211 = of el |UP|URL| + [o*|UR4 %)

3

%
o

11— al[UPP + 11 = allal (1P + U2 7) + | U2,

VAN

%

= > N=afUFP+ 11— alle/|UFP + ) 1 - allal|UZ, [ + |al* U,

i=—00 i=—00

= > L—=aPIUrP+ 1 —alla|UFP+ Y 11— allal|UPf + |af|UF?

= > (I1—of +|e))?|Up?
= (IL—al+la)* ) U

L MUFTE < (L —al el Y |URP

i=—o00 i=—00

and since this applies to all n, we get
(o] o0
DU <(i—al+la)™ ) U, (74)
i=—00 i=—00

stable provided |1 — o + || < 1.

6 Numerical Experiment

6.1 Linear Advection Equation

In the section, we test the Riemann Least Squares Finite Difference scheme (RLFSD) on
various test case problems. First, we compare the Godunov scheme with the RLSFD for a
linear advection equation. We conduct our experiment on a 1-d linear advection equation:

ou ou
N + 0.2% =0, z€]|0,1], (75)
with initial condition
1 02<x<04,
u(z,0) = { 0 otherwise. (76)
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We choose At = 0.01 and a non-uniform gird of 50 point.

Solution at time t=1.0000

1
09
08
07
06
oshe s swen e i
04
L] S A

02

0.1

0 0.1 02 03 04 05 06 07 08 09 1

Figure 2: The RLSFD and Godunov scheme for speed 0.2

Fig.(2) shows the exact solution and the numerical solution advected at a speed of
a = 0.2, till £t = 1s. We see that both schemes are dissipative. However, the Riemann
LSFD is less dissipative than the Godunov scheme.

Fig.(3) shows the result for a = 0.5 , At = 0.01, total advection from ¢ = 1s.

Solution at time t=1.0000
1 T
o) [—Brectsouton| | ..l i AN L
——RLSFD
—— Godunov. . A 5 i Z Vi
L T CIE I SRRV S SRR DO |

. . . . . . : . \
L 4 S R N E LT | e
R e R I RE SRR L T
Y R R CEERREE ERE R SRRl o
Y AU S U A O S AR I
. . . g 5 ‘ I L

0 . 55 i« st 5 0 5 8 0 B BRI e e

ot S5 5 s wede v el e s G v sl o e Do o e

: L i K K 1
UO 0.1 02 03 04 05 0.6 07 08 09 1

Figure 3: RLSFD and the Godunov scheme with speed 0.5

Fig. (3) shows that the Godunov scheme is highly damped whereas the RLSFD has
dissipated by about 10%.
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Figs. (4) and (5) show the numerical solution on a refined mesh of 100 nodes.

Solution at time 1=1.0000

T
Exact solution
—RLSFD

—— Godunov M

Figure 4: Rieman LSFD with 50 nodes

Solution at time t=1.0000

———— Exact solution
RLSFD
Godunov ¥

0.9

0.8
0.7

o6l - - -

0.3r
0.2

0.1

Figure 5: Riemann LSFD with 100 nodes
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In this example we consider a Burgers equation to test a scheme that captures shock
accurately. We perform numerical experiment on the burgers equation.

ou 1 Ou

el e — 0. 77
ot T 2% " (77}
1 0< 2«02
u(x,0) = { 0 otherwise (78)

We choose At = 0.01 and a non -uniform grid of 50 nodes. This is at time ¢ = 1.
From Fig.(6) we observe that Godunov scheme which is the red line has overestimate

the location of shock. The exact solution is show in green. The Riemann LSFD, shown in
blue, locates the shock speed of the burgers equation, exactly(Toro & Toro 1999).

Solution at time t=1.0000

1 T r T

) ’ Exact
Conserv RLSFD

Godunov

0.5F - = - = 2 - s s s e s e R
Bl « = = o ] S 0 o« i
OBF == == ¥ e oo s B ERECE I N WoE g e e
02F = = = 2 = w £ & RS RN B R PR g = w e w o
S SRR e SRR RN

0 ; , \ .
0 0.2 0.4 0.6 0.8 1

Figure 6: Riemann LSFD and godunov scheme on burgers equation

6.2 Sod shock tube problem

The RLSFD scheme is said to be a shock capturing method that capture shock and rar-
efaction accurately . We test the RLSFD scheme for the Sod shock-tube problem. A one
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dimensional equation of the Euler equation is written in conservative form as follows:

dp 0
E =+ %(pU) = 0, (79)
S+ +p) = 0 (80)
OE 0
5 t 3, WE+p) = 0. (81)
This can be written in matrix form as a non linear hyperbolic conservation laws
ou 0
= 4 2 (F = 2
+ —(F)) =0, (52
p pu
where U= | pu | and F(U)=| pu’+p
E u(E + p)

In the terminology of gas dynamics, the presence of discontinuity in the initial condition
corresponds to a system having a shock wave, rarefaction wave and a contact discontinuity
wave. With different configurations of the initial condition, not all waves may be present
but in a sod-shock tube problem each of the wave is present (Toro & Toro 1999). The
initial condition of a Sod shock-tube problem in the domain 0 < z <1 is given as

1 z<0.5 . 1 <05 .
p(m’o)_{ 0.125 z>0.5 p(:E,O)—{ 61 n»05 4VSH=1

We perform the numerical experiment of the RLSFD scheme for the sod shock tube problem
on a 50 non-uniform nodes. We use an approximate Riemann solver known as PVRS for
finding the intermediate state in each primitive variable.

Plot of Density vs Pasition iRLSFD with 50 nodes CFL =0.9 PVRS| Plot of Velocity vs Position

N e RLSFD i N N L — s RLSFD
= N G5 vt s 8 5 88 8 3 |

Velocity
o o
4 o

T

: . " . s . s s " " " " " | L
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 0.9 1
x(m) x(m)

: e RLSFD
. Exact ||

Plot of Pressure vs Position

OB s mwss s MNE=E SRS sme sqavs

0B F ¢ 2 5 5 & a0 s o w0 NN = 5,8 5o B 3o w e oo 28R e e85 e e

Pressure

04F « = = = v mre e e e NN e e e e e e e

02F - - o e e

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
x(m)

Figure 7: The RLSFD scheme at ¢t = 0.2
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Next, we use an exact Riemann solver for finding the intermediate state of the primitive
variable for 50 non-uniform nodes and observed that the CFL has to be below 0.5. Thus
more computational time is needed when using the exact Riemann solver for sod shock-tube
problem.

Plot of Density vs Position [RLSFD with 50 nodes CFL = 0.2] Plot of Velocity vs Position

1 T T T T T T T 1 T T T T T T T T T

08k 05/ ..............
5 06 ] S T IR R S P I WS-
g N/ A U B
o 04} D gighic o o e e e R N, S

0.2 0.2} R

" N R S S N, S N SR 4 AR S R ] B

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(m) x(m)
Plot of Pressure vs Position

1 T T T

0.8
© 06
2
H
3
o 04r

0.2

(1)

0 01 02 03 04 05 06 07 08 09 1
x(m)

Figure 8: The RLSFD scheme with Exact Riemann solver at ¢ = 0.2

In the next two experiments, we increase the computational nodes from 50 to 100 nodes.
We compared the the PVRS solver with the exact Riemann solver in the 2 figures below.
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Plot of Density vs Position }RLSFD scheme with 100 nodes pvrs solverf

Plot of Velocity vs Position
T T

1 T

0.8..................(;"\..,...............

Velocity
° o
> o
T T

02F - - o - - e v Yo i i ie i s el s s ] ok e

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
x (m)

Plot of Pressure vs Position

0.9 1 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

x (m)

1 T T T T T T

Pressure
o
@

o
S

o 0.1 02 0.3 04 0.5 0.6 07 08
x (m)

Figure 9: The RLSFD scheme with Exact Riemann solver at ¢ = 0.2

Plot of Density vs Positon ~ RLSFD scheme with 100 nodes exact solver.  Plot of Velocity vs Position
1 : —~{ - . . : ; . 1 T —— : r : . ; :
08 08}
» 08} > 08}
2 8
g o
o 04} S 04l
0.2r 0.2F
0 1 1 1 1 1 1 1 1 1 0 A f i 1 1 i 1 1  §
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x(m) x(m)
Plot of Pressure vs Position
08f E
o 0.6 4
=3
a
o
& 04 g
02f

Figure 10: The RLSFD scheme

09 1

with Exact Riemann solver at ¢ = 0.2

23



This method is extended to a higher order method by choosing the jumps to be in

the second order least squares derivative given by Z Aa:iAF([ji), where AU; = AU; —

Az; AUL

=1

./, where Ué}) is the first order least squares derivative.

We perform an experiment on a second order RLSFD scheme using a PVRS solver with

100 nodes
Plot of Density vs Position RLSFD 2nd with 100 nodes exact SOIVGH Plot of Velocity vs Position
1 T T T T T +4 T s T T T T T T
1.2p
0.8
1 -
2061 208}
2 8
8 o4} 308
04 | 4
0.2f
0.2
0 1 i i 1 1 i 1 1 I 0 =1 i 1 1 1 il 1
u0 01 02 03 04 05 06 07 08 09 0 014 02 03 04 05 06 07 08 09 1
x(m) X (m)
Plot of Pressure vs Position
1 T T T
08} -
06

Pressure

o
o

o
N
T

=)

01 02 03 04 05 06 07 08
X (m)

o

0.9

Figure 11: The 2nd RLSFD scheme (Exact) with 100 nodes at ¢t = 0.2

The figure below shows the exact Riemann solver for 50 nodes using the 2"¢ RLSFD

scheme.
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Plot of Density vs Position

'RLSFD 2nd with 100 nodes pvrs solver
14 —

1 T T T T T T T T
08
20A6~
[2]
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o
0 04}
021
0 1 i i 1 i i 1 1 1
0 01 02 03 04 05 06 07 08 09
X (m)
Plot of Pressure vs Position
1 T T T T T T T
08f
© 06
3
2
o
o 04f
0.2f
0 1 i i i 1 i 1 1 I
0 01 02 03 04 05 06 07 08 09
X (m)

Plot of Velocity vs Position

1.2p
1t

0 01 02 03

04 05 06
x(m)

Figure 12: The 2nd RLSFD scheme (PVRS) with 100 nodes at ¢t = 0.2

The 2™ RLSFD scheme is more efficient when applied to a uniform grid with 100 nodes

as shown in Fig.(13)
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Plot of Density vs Position Plot of Velocity vs Position

—r— 14

2nd RLSFD
Exact |
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@
T

S —— 2nd RLSFD
1.2f g ’ Exact I

S
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0.2f
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x (m) X (m)
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Exact 1
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Figure 13: The 2nd RLSFD scheme with uniform grid at ¢ = 0.2

6.3 Extension to 2 dimension

We consider a two-dimensional Riemann problem for an ideal gas . The Euler equation for
an ideal gas in 2D is :

Uy + F(U), + G(U), =0, (83)
where
p é)u pv
_| pu _| epuitp _ puv
v=| %, |.F= o G=| s | (84)
pE w(pE + p) v(pE + p)

Here p is the density , u the velocity in the z-direction, v the velocity in the y-direction, F
is the total energy and p is the pressure.

The initial data consists of a single constant state in each of four quadrants of the z — y
plane. The problem is solved in the  — y region (0,1) x (0,1) and the four quadrants are
given by dividing this region by two-lines z = 1,y = 1. We solve the Riemann problem for
Eq. (84) with initial data

p1,u1,v1,p1) if £ >0.5and y > 0.5,
P2, U2,V2,p2) if x < 0.5 and y > 0.5,
p3,u3,v3,p3) if r <0.5and y< 0.5,
P4, Us,Va,ps) if x> 0.5 and y < 0.5,

(
(0,9, )(2,9,0) = E (85)
(
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The different admissible configuration for the polytropic gas consist of the forward rarefac-

tion K ,backward rarefaction R , forward shock S , backward shock (§ and contact-wave
J*. (Kurganov & Tadmor (2002))

7 Numerical Experiment of the RLSFD scheme

First configuration consists of 4 backward shocks. The initial data is given by

1.5,0,0,1.5)

0.5323,1.206,0, 0.3) (86)
0.138, 1.206, 1.206, 0.029)

0.5323,0, 1.206, 0.3)

(pr,u1,v1,p1) =
(p2; ug, v2,p2) =
(p3,us,v3,p3) =
(P4, Ua, Vs, Pa)

A~ A~ A~ A~

This is at ¢ = 0.3 and Fig. (14) shows the solution in the region where these 4 shocks
interact.

07 08 0.9 1

Figure 14: RLSFD scheme with 70 nodes with 32 contours

We observed that the RLSFD scheme located the shock interaction in the inner jump
segments in the lower left quadrant .

The second configuration is a 2 backward shock and 2 forward shock. The initial data
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are given by

(1.1,0,0,1.1)

(0.5065,0.8939, 0, 0.35) (87)
(1.1,0.8939,0.8939, 1.1)

(0.5065,0,0.8939, 0.35)

(p1,u1,v1,p1)
(p2, U2, V2, P2)
(p3, us, v3, p3)
(pa, us, V4, Pa)

This is computed at t = 0.25

Figure 15: RLSFD scheme with 100 nodes with 32 contours

We observed that it resolve the shock well. But the solution is not symmetric in the
lens axis, therefore has different upper and lower curved shocks.

The third configuration is 4 forward rarefaction (Toro & Toro (1999))

(p1,U1,v1,p1) = (1’07()’1)

(pa,uz,va,p2) = (0.5197,—0.7259,0,0.4) (88)
(ps,us,vs3,p3) = (0.1072,—0.7259, —1.4045,0.0439)

(pa,ua,va,pa) = (0.2579,0,—1.4045,0.15)
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This is at t = 0.2

Figure 16: RLSFD scheme with 70 nodes with 32 contours

We observe in Fig.(16) that the RLSFD has the ability to resolve the 4 rarefaction waves
in this configuration.

We consider another configuration which consist of 2 backward rarefaction and 2 forward
rarefaction waves given by

(p1,u1,v1,P1) (1,0,0,1)

(p2, Uz, va, p2) = (0.5197,—0.7259,0,0.4) (89)
(p3,us,vs,p3) = (1,—0.7259,—0.7259,1)

(ps,us,v4,p1) = (0.5197,0,—0.7259,0.4)

We observe in Fig.(17) that the scheme is dissipative in the lower left quadrant but was
able to resolve the 4 rarefaction waves.
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Thisis at t = 0.2

Figure 17: RLSFD scheme with 70 nodes with 32 contours

This configuration consist of 4 negative contact waves and the initial data is given by

(pr,u1,v1,p1) = (1,-0.75,-0.5,1)

(p2,ug,v9,p2) = (2,—0.75,0.5,1) (90)
(p3,us,vs,p3) = (1,0.75,0.5,1)

(pa,uq,vq,ps) = (3,0.75,—0.5,1)
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This is at t = 0.23

Figure 18: RLSFD scheme with 70 nodes with 32 contours

We consider a configuration of 2 negative contacts and 2 forward rarefaction and the
initial data is given by:

(p1,u1,v1,p1) = (1,0.1,0.1,1)

(p2,u2,v2,p2) = (0.5197,-0.6259,0.1,0.4) (91)
(ps,us,v3,p3) = (0.8,0.1,0.1,0.4)

(pa,us,vs,pa) = (0.5197,0.1,—0.6259,0.4)

We observed in Fig.(19) that the RLSFD scheme has a good resolution on the stationary
contact bordering the lower left quadrant. The RLSFD scheme preserve the symmetry
quite well on this configuration about (0,0),(1,1) diagonal. The scheme is dissipative on
the upper right quadrant on the 2 forward rarefaction.
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This is at t = 0.25

0.9

0.7

0.6

05—

0.3f

0.2

Figure 19: RLSFD scheme with 70 nodes with 32 contours

We consider a configuration of 2 negative contacts and 2 backward rarefaction and the
initial data is given by:

(pl,ul,vl,pl) = (05197,01,01,04)

(,02,’(1,2,7}2,[)2) (l, —06259,01, 1) (92)
(,03,1113,’[}3,193) = (08,01,01,1)

( )

P4, U4g, V4, P4 = (1701)_062597 1)

This is at ¢ = 0.25
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Figure 20: RLSFD scheme with 70 nodes with 32 contours

We have applied the RLSFD in 2-D for a two-phase flow. These test cases can be obtain
from Rudman (1997). 2-d numerical experiment are conducted to validate our algorithm.
First test case is a circle advected for ¢ = 0.2s. Initially the circle with radius 0.2 and
centered at (0.5,0.3). By solving the advection equation

ac
5+ Vo) =o. (93)

The advection velocity U is (1,1).
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Exact RLSFDt=0.2 Initially

1 1 1
09 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
04 04 0.4
0.3 0.3 0.3
02 0.2 0.2
0.1 0.1 0.1

00 0.2 0.4 0.6 0.8 1 00 0.2 04 0.6 0.8 A "o 02 0.4 0.6 08

Figure 21: Circle using RLSFD at £ = 0.2

The second test case is a squares advected for ¢ = 0.2 with velocity U = (1, 1). Initially
the circle is center at (0.5,0.3).

Initially Exact t=0.2 RLSFD t-0.2
1 1 1
0.9 0.8 0.9
08 0.8 0.8
07 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
04 04 0.4
0.3 03 0.3
02 . 02 02
0.1 0.1 0.1
GO 0.2 04 0.6 0.8 1 00 0.2 04 0.6 08 1 00 0.2 04 0.6 08

Figure 22: Square using RLSFD at ¢ = 0.2

The compuatation are carried out on a 201 X 201 nodes . For the third test case, we
advect a m-shape, for t = 0.2s as shown in Fig.(23) . The computation are carried out on
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a 201 X 201 computational mesh. The Pi-shape is centered at (0.5,0.3) and advected at a
velocity U = (1,1).

Initially Exact t=0.2 RLSFD t=0.2
1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
04 0.4 0.4
0.3 03 0.3
0.2 0.2 0.2
0.1 0.1 0.1
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 OO 02 04 0.6 08

Figure 23: Pi shape using RLSFD at ¢ = 0.2

The last test case is a slotted disk. This study is useful to test the accuracy of the
reconstruction method and in particular its ability to represent fluid interfaces with high
curvature. A circle with radius equal to 0.2 cells is centred in (0.5, 0.3) with a vertical
rectangular cut is produced with width equal to 3 of the radius and length 2 of the radius
of the circle. The velocity field U = (u,v) can be expressed in terms of the stream function

U(z,y) = 5~ w)? + (& — 20)?), (94)

where u = %% and v = —9~. Fig.(24) advected for ¢ = 0.2s.
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Initially Exact t=0.2 RLSFD t=0.2

09 09 0.9
08 08 0.8
07 0.7 0.7
0.6 0.6 0.6
0.5 0.5

0.4 04

0.3 0.3

0.2 0.2

0.1 0.1

0 0.2 0.4 0.6 0.8 1 ] 0.2 0.4 0.6 08 A 0 0.2 04 0.6 0.8

Figure 24: Slotted Disk using RLSFD at ¢t = 0.2

8 Conclusion

We have described a new Riemann solver that is incorporated in the Least Square Finite
Difference Scheme. We presented 3 types of schemes, namely, the first order Riemann
Least Squares Finite Difference Scheme (RLSFD), the conservative form of the RLSFD
scheme and the second order Riemann Least Squares finite difference scheme. We proved
that the first order RLSFD is consistent with the linear advection equation and we also
conducted its stability analysis. We proved the existence of a weak solution for the first
order RLSFD. Finally, we presented our numerical results when the RLSFD was applied
to the 1-D linear advection equation, 1-D Burgers equation, the Shock tube problem, the
2-D Riemann problem and to some two phase flow problems. Our numerical results show
that the second order RLSFD captures discontinuity in inviscid flow quite accurately. One
possible application of the scheme is in the simulation of traffic flows on highways.
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