# Association between Cervical Cancer and HPV in Mauritius: Paradigm revisited

#### Dr Sanjiv Rughooputh

Lecturer/ Knowledge Exchange Fellow

(MSc, FIBMS, CSci,PhD)

School of Biosciences

University of Westminster

UK

#### Format of talk

- Introduction
- Rationale for Mauritian study
- Material and methods
- Results
- Discussion
- New study
- Molecular Biology facilities

#### **Introduction**

Half a million new cases are diagnosed worldwide.

 Around 300,000 females succumb to cervical cancer each year

 Cancer in general accounted for 11-12% mortality in Mauritius  Annual cancer-associated death rate of 8 in every 1000.

 The incidence of cervical cancer and ovarian cancer combined is around 27% (21% cervical and 6% ovarian)

 Cervical cancer accounts for 65% of gynaecological cancers.

#### Causes of cervical cancer

Development of cervical cancer can be multi-factorial.

- Life style: number of sexual partners
- Age of first sexual contact

- Genetic predisposition
- Exposure to high grade human papillomavirus (HPV). (16, 18, 33)

#### **HPV**

- Papovaviridae with more than 100 genotypes.
- Consists of a capsid with icosahedral symmetry with 72 capsomeres
- Average diameter between 52-55nm.
- Double stranded DNA (dsDNA)
- Molecules coding for the proteins of estimated weight of 5X10<sup>6</sup> Da
- Genome size of approximately 8Kb.
- ORF consist of Early and late genes

100 HPV types that can infect epithelial surfaces

#### **Divided into:**

- Low risk
- Medium risk
- High risk

Dependent on their association with disease.

High Risk HPV:16, 18, 30, 31, 33, and 45

#### **Materials and Methods:**

 Ethics clearance and permission obtained from MOH.

 Histology blocks from sixty five patients diagnosed with cervical cancer in the year 2000

 Controls from patients undergoing hysterectomy

- DNA was extracted from the sections by an in-house method (Rughooputh, 2003)
- Degenerate oligonucleotide primers for the detection of HPV (Ting and Manos 1990)
- Based on the ORF of genes <u>E1</u> and <u>L1</u>.
- Amplicons size vary according to HPV type.
- HPV16 451bp,
- HPV18 454bp
- HPV33- 448bp

#### Primers sequence

 Positive Strand Primer (MY11): 5' GCM CAG GGW CAT AAY AAT GG 3'

- Negative Strand Primer (MY09): 5' CGT CCM ARR GGA WAC TGA TC
- Where M= A + C, R = A + G, W = A + T,
   Y = C +T

#### **PCR**

- 40 cycles of PCR:
- Denaturation 94°C 1 minute,
- Anneal 55 ° C 1 minute
- Extension 72 ° C for 1 minute.
- Post amplification analysis
- Positive samples cleaned and sequenced.

# **Results**

Table 1. Incidence of cervical cancer in different age groups

| Age (years) | Number of positive cases |
|-------------|--------------------------|
| 21- 30      | 2                        |
| 31- 40      | 3                        |
| 41- 50      | 13                       |
| 51- 60      | 11                       |
| 61- 70      | 14                       |
| 71- 80      | 7                        |
| 81- 90      | 3                        |

19% samples PCR-positive for HPV

Youngest patient harbouring HPV DNA was 42

Eldest was 80 years old.

 The mean age for patients positive for HPV was 58.7 year

## **Bioinformatics analysis**

 Sequences analysed using BLAST (<a href="http://www.ncbi.nlm.nih.gov/BLAST">http://www.ncbi.nlm.nih.gov/BLAST</a>)

 A comparison of different sequences showed 96-97% similarity suggesting that the HPV types were similar with minimal mutation.

# **Discussion**

 The incidence of HPV in the cohort was 19%. Cancer was, in general, 2-6 times more common in Creoles

 Other world-wide study suggest incidence of HPV above 80% (Castellsague et al 2002) So?

If HPV is not the main cause of cervical cancer what are the other factors?

#### Several questions need answering

- What is the aetiology of cervical cancer in Mauritius
- Are the patients genetically predisposed?
- Does ethnicity play a role?
- Is cervical cancer due to mutations leading to metastasis
- Acquisition of cancer due to life style, diet or environmental factors?

#### What needs to be done?

• Retrospective study:

Presence of HPV,
Genetic mutations,
Demographics.

Prospective study:
 Follow patients with CIN 2-3
 Collect blood, urine and Pap / Histology
 Questionnaire administration

#### What will then be achieved?

Questionnaire: Details on life style

Histology/ Pap: HPV status, Gene regulation

 Blood and urine: analysed using genomic and proteomics tools for biomarkers.

Biomarkers will be useful in early detection of cancer

#### **Cohort size**

Retrospective study 500 samples

 Prospective study 1200 samples in the next 3-4 years. These will also include controls

 Cohort will have a good representation of all ethnic groups.

#### What are the benefits

 Produce a robust screening test that may be non-invasive

Determine contributing factors in cervical cancer development

Establish who is more at risk

 Identify oncogenes or polymorphisms that contribute to cervical cancer.

#### **Benefit to population**

Awareness campaign

Advise people more at risk

Early screening, decrease death rate

Reduce bed occupancy

 Reduce financial strains both on the government and cancer sufferers.

# Cost implication and measurable outcomes

Project estimated cost Rs 5.5 M

#### **However** this sum will also help in

- Technology transfer
- Setting up a one stop shop Molecular Biology Service

#### **Research Team**

- Dr Sanjiv Rughooputh (PI)
- Prof Pamela Greenwell
- Dr Shyam Manraj
- Mr Rechad Eddoo
- Mr Harris Ramuth
- Dr Nilima Jeebun
- Team members welcome!

#### Molecular Biology service



 Opportunities for expanding the repertoire of tests being offered

Health tourism (e.g Apollo Hospital)

Turn around time for some diagnostic tests

 Providing a centre of excellence in the Indian ocean for molecular biology

Reference centre for some tests

With globalisation, threats of emerging infections such as:

- Influenza Virus (H5N1 or other variants)
- Chikungunya
- Malaria
- Haemorrhagic viruses (West Nile, Ebola)

Threats of Bioterrorism (e.g Antrax)

#### Added value to existing service

#### **Testing for:**

- CHIK
- HPV
- Meningitis
- TB (Multi drug resistance)
- STD (GC, Chlamydia, TV)
- HIV Detection and Viral load

Thallasaemia, sickle cell

Cancer and genetic studies (BRCA)

HLA typing

Malaria

#### Pan pathology Molecular biology suite



#### **Future expansions**

Prenatal diagnosis of inherited diseases (DMD)

 IVF Pre implantation diagnosis of genetic defects

Chromosome painting for defects

FISH

#### **Cost of implementation**

 Some facilities are available, but would need pump priming funding initially from Government or benefactors (Hotels, MRC, International funding bodies)

 Pan-Pathology service provided on a cost recovery and profit basis

Initially some selected tests to be offered.

#### Who can buy in the project?

Project proposal limited to laboratory medicine

#### BUT

- Service may be offered to Forensic for DNA fingerprinting and Forensic molecular biology.
- Genetics studies by other experts.



#### **Challenges**

- Reluctance from management to buy in project
- Lack of enthusiasm from staff

Lack of flexibility

ICT back up

Operational cost

### Acknowledgement

- Molecular and Medical Microbiology Research Group
- Research collaborators UK and Mauritius
- Central Health Lab (Candos)
- Ministry of Health
- Minister of Health
- MRC

# Thank you for your attention

**Any questions?**