Mauritius Research Council
 INNOVATION FOR TECHNOLOGY

Energy Auditing, Management \& Efficiency at CWA Pumping Stations

Final Report - Phase II Comparison of Design Data and Installed Equipment

October 2006

Mauritius Research Council

Telephone: (230) 4651235
Fax:
Email: Website:

We wish to draw your attention that no part of this research paper may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the MRC.

Project on

Energy Auditing, MAnAgement And EfFICIENCY

AT
\section*{CWA Pumping Stations}

Phase II: Comparison of Design Data and Installed Equipment

Research Assistant:	Mr. M A H Domah
Research Supervisor:	Mr. R.T.F. Ah King

Table of Contents

Acknowledgement ii
Abstract iii
Chapter One Introduction 1
Statement of Objectives 1
Methodologies Employed 2
Calculation of Hydraulic Characteristics of distribution lines 4
Variation of System Curves 7
Actual Pumping Techniques 9
Operation with Variable Speed Drives 10
Chapter Two Analysis 13
Electrical Cost Analysis 13
Analysis on System Characteristics
DWS Port Louis 15
DWS - North 24
DWS - East 58
DWS - South 66
MAV - Upper 75
MAV - Lower 82
Chapter Three Summary of Results 121
Pump replacement with no energy savings 121
Pump replacement of oversized pumps 122
Variable Speed Drives 123
Cost Benefit of VSD V/S Auto - Transformer 127
Chapter Four Recommendation 130
Purchase of Submersible Pumps 130
Purchase of Variable Speed Drive 132
Investment Plan 133
Appendix 1: Roughness Size of Pipes
Appendix 2: Water Production $\left(\mathrm{m}^{3}\right)$
Appendix 3: Active Energy Billing (Rs)
Appendix 4: Maximum Demand Charges (Rs)
Appendix 5: Excess kVA charges (Rs)
Appendix 6: Production Charges ($\mathrm{Rs} / \mathrm{m}^{3}$)
Appendix 7: Monitoring Sheet for Barkly BH 664
Appendix 8: Monitoring Sheet for Holyrood 35 E

Acknowledgements

No words are enough to express my gratitude to the Almighty for the unbounded favour He has shown in making this project realizable.

I am highly grateful to my project supervisor, Mr. R.T.F Ah King, Senior Lecturer at the University of Mauritius, for his useful guidance, discussions and suggestions throughout the preparation of this dissertation. I am also grateful to Mr S.Gujjalu, Chief Engineer (WR/OSS), Mr D. Gungadeen, Principal Engineer (M\&E), Mr J. Ghoorah, Executive Engineer (Mech), Mr V. Kanhye, Executive Engineer (Elec), of the Mechanical \& Electrical Department of the Central Water Authority. I am very thankful to the technical officers, viz Mr. H. Jahmeerbacus, Mr. J. Sham, and Mr. R. Ramdhonee for their useful help in carrying out the necessary tests in regards to the completion of the Phase II of this project.

I would like to extend my thanks to Mr. M. Koa Wing of Rey \& Lenferna Ltd for providing a Variable Speed Drive for tests and Mr Y. Hurdowar of the Central Electricity Board and Mr Zeeadally of the Water Resources Unit for providing important data for analysis.

Abstract

This project on 'Energy Auditing, Management and Efficiency at CWA Pumping Stations' has been put forward in order to identify energy conservation opportunities aiming to have an optimized pumping system. It is divided into four distinct phases. Phase 1 which has already been completed, included the gathering of data for computing the production cost at borehole pumping stations and estimating the energy wastage from a desktop study. As per the study of phase 1 of this project, the average production cost based on years 2001, 2002 and 2003. shows the production cost at approximately Rs $0.65 / \mathrm{m}^{3}$ of water. The average production cost for southern pumping stations was Rs $0.55 / \mathrm{m}^{3}$ compared to Rs $0.78 / \mathrm{m}^{3}$ for northern pumping stations. 84% of all borehole-pumping stations have a production cost ranging between Rs 0.25 and Rs 1.25 per m^{3}.

The energy wastage as quantified under phase 1 of the project amounts to Rs 3.6 million / year approximately, representing about 6% of the average annual electricity charges for borehole pumping stations of around Rs 60 million.

The following objectives have been set under Phase II of the project:- - Review pump hydraulic characteristics and electrical ratings in relation to operational requirements - Propose an energy management strategy to improve efficiency of pumping equipment

- Design an optimal and highly efficient pumping system
- Optimization of energy costs.

The projected amount of savings based on the calculation of the hydraulic capacity of pumps as highlighted in Phase 1 was expected to be around 10%. However, based on the findings under this report (Phase II), the energy savings that has been quantified is Rs $\mathbf{6 , 5 6 6}, 266.86$ which is equivalent to $\mathbf{5 . 7 1} \%$ of the annual electricity budget (200607)

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II CHAPTER 1

1.0 Introduction.

The Central Water Authority (CWA) is the sole supplier of potable water in Mauritius. It operates 129 pumping stations and six treatment plants across the island. The Authority has more than 300,000 registered domestic and industrial customers. The annual total volume of water produced, i.e. pumped and treated is around 300 Million m^{3} and the annual turnover based on water sales is Rs $\mathbf{9 5 5}$ Million. The annual electricity cost for the financial year 2005/06 is around Rs 115 Million.

Further to the study made by Research Assistants Messrs G.R Pudaruth \& D. Gungabison for Phase 1 - Site Auditing under this project - "Energy Auditing, Management \& Efficiency at CWA Pumping Stations", it was recommended to carry out a pumping test of each borehole in order to re assess the hydraulic pump capacity and to reduce accordingly the annual energy wastage of Rs 3.6 Million due to oversized Submersible Pumps, inappropriate C.E.B Tariffs, Penalty Charges and Excess kVA demand.

Under Phase II of this project, I Mohammad A H Domah, Trainee Engineer (Mechatronics) have been given the responsibility of Research Assistant to carry out the overall and specific objectives of the project as set out by the Mauritius Research Council and Central Water Authority.

1.1 Overall Objectives:-

The overall objectives of this project under Phase II are as follows:

- Review pump hydraulic characteristics and electrical ratings in relation to operational requirements
- Propose an energy management strategy to improve efficiency of pumping equipment
- Design an optimal and highly efficient pumping system
- Optimize energy costs.

1.2 Specific Objectives:-

- Study the economics of pump replacement
- Determine the optimum yield of each borehole

Project-Energy Auditing, Management \& Efficiency at

CWA - Pumping Stations- Phase II

- Calculate the hydraulic duty point for pumps on each site with respect to borehole and distribution network characteristics.

1.3 Methodologies adopted:-

The methodologies adopted are detailed hereunder:

- Perform pumping tests and calculating the efficiency of the pump at its operational point for each borehole.
- Calculate the hydraulic characteristics of the distribution lines.
- Collect information regarding all operational boreholes characteristics with emphasis on safe pumping yield and actual pumping rates for both the normal and dry season.
- Review of electrical costs of the different pumps in use at CWA.
- Calculation of payback period for the equipment to be installed at each site.
- Researching on new techniques employed for pumping of potable water.

1.4 Methodology for Pumping Tests

1.4.1 The pump was made to operate at different flows by valve throttling the discharge valve and the following parameters were measured:

- Actual Flow (Q) - $\mathrm{m}^{3} / \mathrm{hr}$
- Discharge Head of Pump at bend $\left(\mathrm{H}_{\mathrm{d}}\right)$ in metres (m)
- Dynamic Water Level measured up to bend i.e. Static Head $\left(\mathrm{H}_{\mathrm{s}}\right)$ of Pump in metres (m)
- Electrical Input Power to pump motor $\left(\mathrm{P}_{\mathrm{m}}\right)$ in kilowatts (kW)
1.4.2 Instrumentation used for pumping test:-
- The actual flow rate was measured using the existing flow meter reading and a stopwatch.
- The pressure head at the bend was measured by a pressure gauge in Bar and the reading was then converted to meter (m) by the ratio $1 \mathrm{bar}=10 \mathrm{~m}$
- The Dynamic Water Level (m) was measured using a sounding line.
- The electrical power input (kW) to the motor was measured using an energy meter.
1.4.3 Based on the above mentioned measurements, the following calculations are done to determine the Pump Efficiency:

Energy conversion in operation of submersible pump

a) Hydraulic Output Power of the pump

$$
\text { Hydraulic Power, } \mathrm{P}_{\mathrm{h}}(\mathrm{~kW})=\frac{Q \cdot\left(h_{d}-h_{s}\right) \cdot \ell . g}{1000}
$$

where $\mathrm{Q}=$ Volume flow rate in $\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{h}_{\mathrm{d}}=$ Discharge head (m)
$\mathrm{h}_{\mathrm{s}}=$ Suction Head (m)
$\ell=$ Density of Water $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{g}=$ acceleration due to gravity $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
b) Pump Shaft Power, $P_{\text {s }}$

$$
\text { Pump Shaft Power, } \mathrm{P}_{\mathrm{s}}=\frac{\text { HydraulicPower }, P_{h}}{\text { PumpEfficiency, } \eta_{\mathrm{pump}}} \mathrm{~kW}
$$

c) Electrical Input Power

$$
\text { Electrical Input Power, } \mathrm{P}_{\mathrm{m}}=\frac{\text { PumpShaftPower, } P_{s}}{\text { ElectricMotorEfficiency, } \eta_{m}}
$$

Also, the motor input P_{m} can be measured by using a portable power analyzer.

d) Pump Efficiency

The Pump Efficiency is calculated by the formula:

$$
\eta_{\text {Pump }}=\frac{\text { HydraulicPower }, P_{h}}{\text { PumpShaftPower }, P_{s}}
$$

1.5 Calculation of hydraulic characteristic of distribution system:

The hydraulic characteristic of the distribution system has been done by using the 'L' profile of the distribution line obtained from the CWA's drawing office. The following information are gathered from the drawings as detailed below:

- No. of fittings installed (Bends, Sluice Valve, Air Valve, Reducer/Enlarger, NonReturn Valve) in the distribution line.
- Length and type of pipe in the distribution.
- Ground Level at Source, SGL
- Ground Level at destination, DGL

From the above information, the following calculations are done:

a) Static Head

The Static Head is the vertical distance between the liquid surfaces in the maximum height that the water will reach and it is given by the following formula:
SHR = DGL - SGL + DWL

Where:

$$
\begin{aligned}
& \text { SHR }=\text { Static Head Difference }(\mathrm{m}) \\
& \text { DGL }=\text { Ground level at destination }(\mathrm{m}) \\
& \text { SGL }=\text { Ground level at source }(\mathrm{m}) \\
& \text { DWL }=\text { Dynamic Water Level }(\mathrm{m})
\end{aligned}
$$

b) Pressure Head

The pressure head required at some point of the distribution line. If the end point is a reservoir or a balancing tank, then the pressure head would be 0 m .

c) Frictional Head Losses

There are two types of frictional head losses, viz

- Head loss due to friction in pipes
- Head loss due to friction in fittings

d) Frictional Head loss in pipes

The frictional head loss in pipes is calculated by using the Haaland and the Darcy Weisbach formulae.

Haaland Formula:

$$
\frac{1}{\sqrt{f}}=-3.6 \log \left(\frac{6.9}{R_{e}}+\left\{\frac{K_{S}}{3.71 D}\right\}^{1.11}\right)
$$

where:
$\mathrm{f}=$ Friction factor of pipe
d = internal diameter of pipe
$\mathrm{k}_{\mathrm{s}}=$ Roughness size on the internal surface of the pipes. The values of the roughness for different materials is given at Annex-1
$\mathrm{R}_{\mathrm{e}}=$ Reynolds Number

Reynolds Number is determined by the following equation:

$$
R_{e}=\frac{v d}{\gamma}
$$

Where:
$\mathrm{v}=$ average velocity of the fluid in the pipe
$\mathrm{d}=$ pipe inside diameter
$\gamma=$ kinematic viscosity of liquid (for water $\gamma=1.14 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$)

The Haaland formula is used rather than the Colebrook equation, as the latter involves the friction factor on both sides and as per "Mechanics of Fluids by B.S Massey", the friction factor calculated by Haaland will be less than 1.5% than that by Colebrook's formula. This is considered to be acceptable.
Once the value for the friction factor is obtained, the Darcy - Weisbach equation is then used to calculate the friction head loss.

Darcy - Weisbach Equation:

$$
H_{f}=f \frac{L}{d} \frac{v^{2}}{2 g}
$$

Where:
$\mathrm{H}_{\mathrm{f}}=$ Head loss due to friction in distribution pipe
$\mathrm{f}=$ Friction factor of pipe
$\mathrm{L}=$ Length of distribution pipe
d = internal diameter of distribution pipe
$\mathrm{v}=$ average velocity of fluid in pipe
$\mathrm{g}=$ acceleration due to gravity

e) Head loss due to friction in fittings

The head loss due to friction in fittings is calculated by using an equivalent length of straight pipe. These values are given hereunder:

Type of Fitting	Equivalent Length of Straight Pipe (m)
Pump	150
Bend 90	18
Sluice Valve	7
Non return Valve	45
Air Valve	11
Tee	11
Reducer	45
Round Elbow	45

Using the above mentioned values, the equivalent lengths are then used in the calculation of the head loss in the fittings.

1.6 System Curve

From the calculation of the different heads as described at section 1.5, the system curve is then drawn and by superimposing the pump curve on it, the operating point of the pump is obtained. At this point, the flow should be the safe yield of the borehole so that it is not depleted and the Dynamic Water Level of the borehole remains stable during operation of the pump.

The above mentioned graph shows the system curve for a pump pumping into a reservoir or a balancing tank.

1.7 Variation of system curve

The system curve calculated is expected to remain the same at all periods, but however this is not the case. The system curve varies in two different ways:

- Variation due to changes in static head
- Variation due to new restriction being added up on the distribution line

Variation in static head occurs across the year due to changes in the Dynamic Water level of the borehole. In rainy seasons, the water level is high, but during dry seasons, there is a drastic drop in this water level. Whereas 'variation due to new restriction being added up' occurs when the demand on the distribution line decreases at night.

The variation of the system curve is shown below:

1.8 Actual pumping Techniques.

The pumping of liquids consumes enormous quantities of energy, and deserves some thoughtful consideration by those who manage the profits/production costs when desiring to save more through energy management.
The electric motor of a submersible pump is a ' 2 ' Pole motor and the startup current when starting the motor is seven times the nominal/operation current of the motor. To avoid this over current at startup, there are several techniques used so that associated equipment in the operation of the pump are not oversized and also to avoid excess charges for the electrical power consumption. The most common operation techniques of submersible pumps in the authority are as follows:

- Direct On Line, DOL (up to 10 kW)
- Star- Delta
- Auto - transformer Starter

In using an Auto transformer Starter, the starting current is limited to 2.5 times the nominal/operation current.
Other techniques for the startup and operation of submersible pumps include the use of SoftStarters or Variable Speed Drives, VSD.

1.9 Sizing of Submersible Pumps

In determining the duty point of submersible pump the system curves of the distribution system is to be calculated. The system curve reflects the variation of the friction head and static head vary at different flow. The operation point of the submersible pump is the point of intersection between the System and the pump curves.
However, for situations where submersible pumps operate directly into the distribution mains, the system curve changes as new restriction add up in the static head component when consumption decreases at night. In such situations, the pump consumes more energy.

1.10 Operation of Submersible pumps using Variable Speed drives.

As stated above, a centrifugal pump is a dynamic device with the pressure head generated from a rotary impeller. All the characteristics of the submersible pump are related to the velocity of the impeller of the pump. The equations relating the rotodynamic pump performance parameters of flow, head and power absorbed to speed are known as the Affinity laws:

$$
\begin{gathered}
\mathbf{Q} \boldsymbol{\alpha} \mathbf{N} \\
\mathbf{H} \alpha \mathbf{N}^{2} \\
\mathbf{P} \propto \mathbf{N}^{3}
\end{gathered}
$$

Where:
Q: Flow rate $\mathrm{m}^{3} / \mathrm{Hr}$
H: Head (m)
P: Power Absorbed (kW)
N : Rotating Speed (rpm)
Based on these equations, it is expected that doubling the speed of the centrifugal pump will increase the power consumption by 8 times and conversely, a small reduction of the speed will result in drastic reduction of power consumption.

1.11 Test Results using Variable Speed Drive

A 26kW Allen Bradley Variable Speed Drive was installed at Pailles Bench Test and was made to drive a Submersible Pump of make Saer rated at $125 \mathrm{~m}^{3} / \mathrm{Hr} x 32 \mathrm{~m} \times 15 \mathrm{~kW}$ ref: S 181C2. The following results were obtained:

Test No	Drive Speed (Hz)	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{m}^{3} / \mathrm{hr}\right) \end{aligned}$	Pressure (m)	Input to Variable Speed Drive					Input to Motor			
				Current (A)	Voltage (VAC)	pf	kW	kVA	Current (A)	Voltage (VAC)	pf	kW
1	50	68.4	41.3	33.7	408.0	0.995	18.3	18.6	27.2	391.6	0.813	11.0
2	45	61.2	31.3	19.8	408.0	0.995	13.8	13.9	26.2	322.6	0.820	12.6
3	40	56.4	26.3	14.8	409.0	0.993	10.4	10.5	22.9	256.8	0.980	8.8
4	35	46.8	21.3	11.8	410.0	0.988	8.6	8.4	20.4	195.2	0.850	6.1
5	30	42	13.3	8.2	410.0	0.990	5.7	5.8	19.6	192.8	0.860	4.0

Based on the above mentioned results it is shown that as per laws of Affinity,

- The flow rate varies directly with the pump Speed.
- The pump head varies directly to the square of the pump speed $\left(\mathrm{N}^{2}\right)$
- The pump power varies to the cube of the pump speed $\left(\mathrm{N}^{3}\right)$

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II CHAPTER 2
 Analysis

2.1 Introduction.

This chapter deals with the analysis based on pump performance tests, theoretical pump curve, characteristic of distribution system and borehole information gathered from the Water Resources Unit and electricity cost from the Central Electricity Board.

2.2 Electrical Cost Analysis.

From the information gathered from Water Resources Unit, Central Water Authority - NRW (Non Revenue Water Section) and the Central Electricity Board, the electrical cost of production per meter cube of water has been done and same is given at Annex - 2, 3, 4, 5, 6. The cost of production for the year 2004 was Rs $\mathbf{0 . 7 4} / \mathbf{m}^{\mathbf{3}}$ and the cost of production for the year 2005 was Rs $0.77 / \mathbf{m}^{3}$
The cost of production for Northern Pumping stations was Rs $\mathbf{0 . 7 1} / \mathbf{m}^{\mathbf{3}}$ (2004) and Rs $\mathbf{0 . 7 0} / \mathbf{m}^{\mathbf{3}}$ (2005) and the cost of production for Southern Pumping stations was Rs $\mathbf{0 . 6 8} / \mathbf{m}^{\mathbf{3}}$ (2004) and Rs $\mathbf{0 . 7 5} / \mathbf{m}^{\mathbf{3}}$ (2005)
It is observed that pumping stations operating directly on the distribution line have a cost of production near Rs $1.0 / \mathrm{m}^{3}$
It is also observed that the penalty charges on Excess kVA demand amounts to Rs $\mathbf{1 1 1 , 9 0 0}$ in 2004 (0.182% of Annual Electricity Cost) and Rs 84,530 in 2005 (0.119% of Annual Electricity Cost). These cases of Excess kVA have occurred prior to the installation of Power Factor Correctors and due to failure of the installed Power Factor Correctors on sites

2.3 Analysis based on System Characteristic

The following sites have been omitted due to the following reasons:

Site	Reason
Constance BH 459, Petit Paquet BH 900 and Belle Rose Clemencia Pumping Station BH 42	These Sites are being upgraded under the contract MW
Bassin Loulou (Jamblon) BH	Pump Test not possible due to blocked piezzo pipe.
New Cottage BH 564	Installed Electronic Flowmeter is out of service and installation of NRW's Ultrasonic Flowmeter not possible

2.31 Analysis for DWS - Port Louis system

Beau Bois BH825 (CEB Acc: 3C7476)
The Borehole characteristics are:
Borehole Depth: 123 m
Dynamic Water Level: 20.71m
Safe Yield: $40 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $50 \mathrm{~m}^{3} / \mathrm{hr} \times 150 \mathrm{~m} \times 30 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 13-11-03

Based on pump performance tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical curve. The intersection point between the system curve and theoretical pump curve is found to be above the safe yield. The efficiency of the pump at its operational point is 63.1%. This pump is found to be overrated as the borehole suffers recurrent drop in its dynamic water level. Based on a pump efficiency of 70% and the available motor the required hydraulic capacity of pump would be $40 \mathrm{~m}^{3} / \mathrm{hr} \times 100 \mathrm{~m} \times 17.5 \mathrm{~kW}$

Beau Bois BH871 (CEB Acc:3C7872)

The Borehole characteristics are:
Borehole Depth: 120 m
Dynamic Water Level: 33.25m
Safe Yield: $88 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $75 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 16-05-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 70.24%.

Beau Bois BH76B

The Borehole characteristics are:
Borehole Depth: 59.4 m
Dynamic Water Level: 20.4 m
Safe Yield: $15 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $20 \mathrm{~m}^{3} / \mathrm{Hr} \times 91 \mathrm{mx} 11 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 22-07-05

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 39.1%. This pump is overrated and the borehole suffers recurrent drop in water level under operation of this pump. The required pump based on an efficiency of 70% and available motor would be $15 \mathrm{~m}^{3} / \mathrm{hr} \times 80 \mathrm{~m} \times 7.5 \mathrm{~kW}$

Beau Songes BH722C (CEB Acc:7C7212)

The Borehole characteristics are:
Borehole Depth: 85 m
Dynamic Water Level: 51.4 m
Safe Yield: $240 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $240 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} x 92 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: : 28-07-99

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 74.3%.

Beau Songes BH 722B (CEB Acc:7C7212)
The Borehole characteristics are:
Borehole Depth: 81 m
Dynamic Water Level: 50.35 m
Safe Yield: $110 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $100 \mathrm{~m}^{3} / \mathrm{Hr} \times 125 \mathrm{~m} x 45 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 06-01-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 30.5%. The required pump based on an efficiency of 70% and available motor would be $110 \mathrm{~m}^{3} / \mathrm{hr} \times 100 \mathrm{~m}$ x 45 kW

Petite Riviere BH F2A (CEB Acc:1C4072)
The Borehole characteristics are:
Borehole Depth: 42 m
Dynamic Water Level: 37.7 m
Safe Yield: $114 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 13-06-00

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 67.93\%.

Pierrefonds BH712 (CEB Acc:7C7172)

The Borehole characteristics are:
Borehole Depth: 145 m
Dynamic Water Level: 67.31 m
Safe Yield: $170 \mathrm{~m}^{3} / \mathrm{hr}$
Installed Pump Hydraulic Capacity: - $200 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} x 59 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 05-12-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 71.8%.

St Martin BH 367 A\& B (CEB Acc:3C5942)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 367A	BH367B
Borehole Depth:	33 m	34 m
Dynamic Water Level:	22.8 m	20.8 m
Safe Yield:	$75 \mathrm{~m}^{3} / \mathrm{Hr}$	$123 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$50 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \mathrm{x} 15 \mathrm{~kW}$	$120 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 45 \mathrm{~kW}$
Pump Make:	Super D	Caprari
Date Installed:	$22-07-98$	$11-09-03$

St Martin 367A

St Martin 367B

Based on tests,

- For St Martin 367A it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve and there is no intersection between the system curve and theoretical pump. The efficiency of the pump at its operational point is 56.97%. The required pump based on an efficiency of 70% and available motor would be 75 $\mathrm{m}^{3} / \mathrm{hr} \times 50 \mathrm{mx} 15 \mathrm{~kW}$
- For St Martin 367B it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 49.8%. The required pump based on an efficiency of 70% and available motor would be $120 \mathrm{~m}^{3} / \mathrm{hr} \times 50 \mathrm{~m} \times 22 \mathrm{~kW}$

2.32 Analysis for DWS - North system

Belle Vue Mauricia BH82 (CEB Acc: 6C1527)

The Borehole characteristics are:
Borehole Depth: 64.3 m
Dynamic Water Level: 36.54 m
Safe Yield: $78 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $75 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 18-08-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 66.6% and is acceptable.

Bassin Loulou Gallery

The Borehole characteristics are:
Well Depth: 5 m
Dynamic Water Level: 3m
Safe Yield: $90 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 22 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 17-06-00

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 91.96% and is acceptable.

Beau Plateau BH 737 (CEB Acc:2C7103)
The Borehole characteristics are:
Borehole Depth: 125 m
Dynamic Water Level: 23 m
Safe Yield: $100 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $77 \mathrm{~m}^{3} / \mathrm{Hr} \times 92 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Grundfos
Date Installed: 18-03-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 72.1%. This site is underutilized.

Bois Mangues BH 12 (CEB Acc: 6C1528)
The Borehole characteristics are:
Borehole Depth: 66 m
Dynamic Water Level: 46 m
Safe Yield: $54 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 22 \mathrm{~kW}$
Pump Make: Used Super D
Date Installed: 28-11-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 50.2%. This is due to the use of an oversized motor. The recommended pump based on a pump efficiency of 70% and available motor rating; will be $50 \mathrm{~m}^{3} / \mathrm{hr} \times 60 \mathrm{~m} \times 11 \mathrm{~kW}$

Camp La Boue BH SW26 (CEB Acc:6C6109)
The Borehole characteristics are:
Borehole Depth: 25 m
Dynamic Water Level: 9 m
Safe Yield: $24 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $20 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \times 5.6 \mathrm{~kW}$
Pump Make: Used Super D
Date Installed: 01-03-99

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 31.9%. The recommended pump based on a pump efficiency of 70% and available motor rating; will be $25 \mathrm{~m}^{3} / \mathrm{hr} \times 80 \mathrm{~m} \times 11 \mathrm{~kW}$

Camp Thorel BH 754 (CEB Acc: 6C7201)
The Borehole characteristics are:
Borehole Depth: 91 m
Dynamic Water Level: 23.37 m
Safe Yield: $240 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $330 \mathrm{~m}^{3} / \mathrm{Hr} \times 105 \mathrm{~m} \times 132 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 25-10-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 54.4% and is acceptable. This pump is highly overrated. The recommended pump at the safe yield based on a pump efficiency of 70% and available motor rating would be $240 \mathrm{~m}^{3} / \mathrm{Hr} \times 110 \mathrm{~m} \times 110 \mathrm{~kW}$.

Cottage Poonith BH 563A (CEB Acc: 2C4693)
The Borehole characteristics are:
Borehole Depth: 80 m
Dynamic Water Level: 46.4 m
Safe Yield: $108 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $72 \mathrm{~m}^{3} / \mathrm{Hr} \times 120 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 11-03-05

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 76.5%.

Esperance Trebuchet BH 537A (CEB Acc: 2C3014)
The Borehole characteristics are:
Borehole Depth: 46.02 m
Dynamic Water Level: 20.35 m
Safe Yield: $108 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 55 \mathrm{~m} \times 18.5 \mathrm{~kW}$
Pump Make: Jetspa
Date Installed: 16-09-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 43.43%. However, the delivery head of the pump is overrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $110 \mathrm{~m}^{3} / \mathrm{Hr} \times 35$ mx 15 kW .

Fond Du Sac BH 1 (CEB Acc: 6C2562)
The Borehole characteristics are:
Borehole Depth: 48.76 m
Dynamic Water Level: 39.44 m
Safe Yield: $72 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $100 \mathrm{~m}^{3} / \mathrm{Hr} \times 95 \mathrm{~m} \times 30 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 25-09-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above safe yield. The efficiency of the pump at its operational point is 50.8%. The delivery head of the pump is overrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $72 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 22 \mathrm{~kW}$

Fond Du Sac BH 643 (CEB Acc: 6C2562)
The Borehole characteristics are:
Borehole Depth: 47 m
Dynamic Water Level: 39.85 m
Safe Yield: $152 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 09-10-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 61.5%.

Fond Du Sac - Forbach BH 743 (CEB Acc: 6C7464)
The Borehole characteristics are:
Borehole Depth: 123 m
Dynamic Water Level: 47 m
Safe Yield: $261 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $240 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 55 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 01-07-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 44.4%. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $260 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 70 \mathrm{~kW}$

Haute Rive BH 391B (CEB Acc:2C2854)

The Borehole characteristics are:
Borehole Depth: 40 m
Dynamic Water Level: 22 m
Safe Yield: $72 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $80 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 22 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 19-10-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. However, this yield is rarely achieved. The efficiency of the pump at its operational point is 43.2%. Based on a pump efficiency of 70% and available motor rating a pump of rating $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 18.5 \mathrm{~kW}$ is recommended

La clemence BH 692 (CEB Acc:2C6258)

The Borehole characteristics are:
Borehole Depth: 60 m
Dynamic Water Level: 29.47 m
Safe Yield: $54 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $20 \mathrm{~m}^{3} / \mathrm{Hr}$ x 90 m x 11 kW
Pump Make: Caprari
Date Installed: 18-01-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 32.8%. Based on a pump efficiency of 70% and available motor rating a pump of rating $20 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times$ 7.5 kW is recommended

La Louisa BH 936 (CEB Acc:)

The Borehole characteristics are:
Borehole Depth: 101 m
Dynamic Water Level: 40.7 m
Safe Yield: $315 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $275 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \times 75 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 10-09-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 59.6%.

Labourdonnais BH 551A (CEB Acc:2C5741)

The Borehole characteristics are:
Borehole Depth: 84 m
Dynamic Water Level: 61.37 m
Safe Yield: $42 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $40 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 15 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 10-03-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 66.1%.

Mapou BH 558 (CEB Acc:6C7196)
The Borehole characteristics are:
Borehole Depth: 87 m
Dynamic Water Level: 54.73 m
Safe Yield: $65 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 22.4 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 21-03-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above safe yield. The efficiency of the pump at its operational point is 59.7%. This pump experienced failure on 15-03-06 and was replaced by a used pump rated at $75 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \times$ 20 kW . However, the recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $65 \mathrm{~m}^{3} / \mathrm{Hr} \times 85 \mathrm{~m} \times 22 \mathrm{~kW}$

Mon Loisir BH 720 (CEB Acc:2C6703)

The Borehole characteristics are:
Borehole Depth: 61.8 m
Dynamic Water Level: 40.43 m
Safe Yield: $100 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 23-11-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 59.4%. This borehole is underexploited as the requirement for the distribution line is below the borehole yield.

Morcellement St Andre BH 117A\& B (CEB Acc: 6C3521)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 117A	BH117B
Borehole Depth:	58 m	55 m
Dynamic Water Level:	21.4 m	16.79 m
Safe Yield:	$66 \mathrm{~m}^{3} / \mathrm{Hr}$	$66 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$50 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \mathrm{x} 22 \mathrm{~kW}$	$50 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 18.5 \mathrm{~kW}$
Pump Make:	Grundfos	Grundfos
Date Installed	$09-06-99$	$18-05-99$

Morc 117A

Morc 117B
Based on tests,

- For Morc 117A it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve and the intersection between the system curve and theoretical pump is near the safe yield. The efficiency of the pump at its operational point is 58.8\%.
- For Morc 117B it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 59\%.

Morcellement St Andre BH 306 (CEB Acc:6C2798)
The Borehole characteristics are:
Borehole Depth: 26.2 m
Dynamic Water Level: 22.57
Safe Yield: $144 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $125 \mathrm{~m}^{3} / \mathrm{Hr} \times 32 \mathrm{~m} x 18.5 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 22-10-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 55.6%.

Morcellement St Andre BH 309 A\& B (CEB Acc:6C3523)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 309A	BH309B
Borehole Depth:	72 m	63 m
Dynamic Water Level:	39.6	14.2
Safe Yield:	$42 \mathrm{~m}^{3} / \mathrm{Hr}$	$42 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$45 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 11 \mathrm{~kW}$	$25 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 9.2 \mathrm{~kW}$
Pump Make:	Jetspa	Caprari
Date Installed	$16-02-02$	$16-08-05$

Morc 309A

Morc 309B

Based on tests,

- For BH 309A it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 71.7%. The Installed Pump Hydraulic Capacity's motor is overrated and based on a pump efficiency of 70% and available motor rating a pump of rating $45 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \mathrm{x}$ 7.5 kW is recommended
- For BH 309B it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 12.1% the Installed Pump Hydraulic Capacity's motor is overrated and based on a pump efficiency of 70% and available motor rating a pump of rating $45 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times$ 7.5 kW is recommended

Piton Bon Espoir BH 820 (CEB Acc:2C7420)
The Borehole characteristics are:
Borehole Depth: 133 m
Dynamic Water Level: 84
Safe Yield: $194 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $240 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 92 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 25-04-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 65.99%.

Poudre D'Or BH 752 (CEB Acc:2C7137)

The Borehole characteristics are:
Borehole Depth: 99 m
Dynamic Water Level: 30
Safe Yield: $270 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $306 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 75 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 11-01-00

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 49.43%. Based on a pump efficiency of 70% and available motor rating a pump of rating $270 \mathrm{~m}^{3} / \mathrm{Hr} x$ 60 mx 65 kW is recommended

Poudre D'Or BH 123(i) (CEB Acc:2M0382)

The Borehole characteristics are:
Borehole Depth: 54 m
Dynamic Water Level: 37.96
Safe Yield: $66 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $50 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 15 \mathrm{~kW}$
Pump Make: Super D
Date Installed: 03-11-97

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 43.7%. Based on a pump efficiency of 70% and available motor rating a pump of rating $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times$ 11 kW is recommended

Poudre D'Or BH 123(ii) (CEB Acc:2C4592)

The Borehole characteristics are:
Borehole Depth: 50.6 m
Dynamic Water Level: 22.76
Safe Yield: $72 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $37 \mathrm{~m}^{3} / \mathrm{Hr} \times 50 \mathrm{~m} \times 9.3 \mathrm{~kW}$
Pump Make: KSB
Date Installed: 1999

The theoretical pump curve is not available for this pump. The efficiency of the pump at its operational point is 40.47%. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $72 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 22 \mathrm{~kW}$

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II

Poudre D'Or BH 123(iii) (CEB Acc:2C2308)
The Borehole characteristics are:
Borehole Depth: 34 m
Dynamic Water Level: 25.54
Safe Yield: $120 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $180 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 28-02-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 82.7%. Based on a pump efficiency of 70% and available motor rating a pump of rating $120 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times$ 18 kW is recommended.

Poudre D'Or BH 123(iv) (CEB Acc:2C4281)
The Borehole characteristics are:
Borehole Depth: 41.3 m
Dynamic Water Level: 23.3
Safe Yield: $156 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $180 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 30 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 30-06-97

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 59.74%. Based on a pump efficiency of 70% and available motor rating a pump of rating $156 \mathrm{~m}^{3} / \mathrm{Hr} x$ 40 mx 26 kW is recommended

Petite Retraite BH 1 (CEB Acc:2C2849)

This site has two boreholes which are operated simultaneously. The Borehole characteristics are:

	BH 1	BH2
Borehole Depth:	34.6 m	41 m
Dynamic Water Level:	26	30.2
Safe Yield:	$210 \mathrm{~m}^{3} / \mathrm{Hr}$	$210 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Capacity:	Hydraulic	$150 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 45 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed	$6-12-94$	$\mathrm{mr} \times 66 \mathrm{~kW}$

Petite Retraite No 1

Petite Retraite No 2

Based on tests,

- For Petite Retraite BH 1, the theoretical pump curve is not available. The efficiency of the pump at its operational point is 44.42%. The required pump based on a pump efficiency of 70% and available motor rating a pump of rating $210 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 32$ kW is recommended
- For Petite Retraite BH 2 it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 68% the Installed Pump Hydraulic Capacity's motor is overrated and based on a pump efficiency of 70% and available motor rating a pump of rating $210 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 32 \mathrm{~kW}$ is recommended

Riche Terre BH 36 (CEB Acc:)

The Borehole characteristics are:
Borehole Depth: 36 m
Dynamic Water Level: 34.21
Safe Yield: $60 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $50 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 15 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 28-01-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 37.7%. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 18 \mathrm{~kW}$

New Schoenfeld BH 337A (CEB Acc:2C4322)
The Borehole characteristics are:
Borehole Depth: 33.83 m
Dynamic Water Level: 11.53
Safe Yield: $96 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $50 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 18.5 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 13-11-03

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well below the safe yield. The efficiency of the pump at its operational point is 48.7%. This pump operates directly on the distribution line and the required flow is only $50 \mathrm{~m}^{3} / \mathrm{hr}$. At this flow, the Installed Pump Hydraulic Capacity is appropriate.

New Schoenfeld BH 337 (CEB Acc:)

The Borehole characteristics are:
Borehole Depth: 32.4 m
Dynamic Water Level: 19.4
Safe Yield: $96 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $130 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \times 15 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 10-09-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 53.7%.

Solitude BH 748 (CEB Acc: 6C7044)

The Borehole characteristics are:
Borehole Depth: 112 m
Dynamic Water Level: 32m
Safe Yield: $80 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $55 \mathrm{~m}^{3} / \mathrm{Hr} \times 110 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 28-08-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 44.6%. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $80 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 28 \mathrm{~kW}$

2.33 Analysis for DWS - East system

Bel Etang BH 538 (CEB Acc: 4C4910)

The Borehole characteristics are:
Borehole Depth: 58 m
Dynamic Water Level: 23
Safe Yield: $70 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $70 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 18.6 \mathrm{~kW}$
Pump Make: Super D
Date Installed: 31-03-97

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 57.14%.

Bonne Mere BH 492 A \& B (CEB Acc:2C3357)

This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 492A	BH492B
Borehole Depth:	$39,5 \mathrm{~m}$	47.24 m
Dynamic Water Level:	34.5	25.64
Safe Yield:	$210 \mathrm{~m}^{3} / \mathrm{Hr}$	$150 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$275 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \mathrm{x} \mathrm{75} \mathrm{kW}$	$275 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \mathrm{x} \mathrm{75} \mathrm{kW}$
Pump Make:	Caprari	Caprari
Date Installed	$16-08-05$	$06-10-98$

Test Results for Borehole 492A

Test Results for Borehole 492B

Based on tests, it is found that for both boreholes, the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump for Borehole 492 A at its operational point is 58.54% and that of Borehole 492B is 56.7% and is acceptable. This site has been continuously producing above $270 \mathrm{~m}^{3} / \mathrm{Hr}$ without any drastic drop in the Dynamic Water Level. The recommended pump at this flow would be $270 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 66$ kW.

Camp Ithier BH 815 (CEB Acc:2C7848)

The Borehole characteristics are:
Borehole Depth: 122 m
Dynamic Water Level: 59.6
Safe Yield: $85 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $85 \mathrm{~m}^{3} / \mathrm{Hr} \times 125 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 21-02-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 31.4%. The Installed Pump Hydraulic Capacity has an underrated motor and can lead to pump failure. Based on a pump efficiency of 70% and available motor rating a pump of rating $85 \mathrm{~m}^{3} / \mathrm{Hr} x$ $125 \mathrm{~m} \times 45 \mathrm{~kW}$ is recommended

Caroline BH 44A (CEB Acc:2C1937)

The Borehole characteristics are:
Borehole Depth: 32 m
Dynamic Water Level: 10.99
Safe Yield: $220 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $229 \mathrm{~m}^{3} / \mathrm{Hr} \times 66 \mathrm{~m} \times 66 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 23-03-99

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is near its safe yield. The efficiency of the pump at its operational point is 50.67% which is acceptable. This delivery head of the pump is underrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be 220 $\mathrm{m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 70 \mathrm{~kW}$.

Caroline BH 44B (CEB Acc: 2C1937)
The Borehole characteristics are:
Borehole Depth: 34 m
Dynamic Water Level: 14.32
Safe Yield: $240 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $250 \mathrm{~m}^{3} / \mathrm{Hr} \times 65 \mathrm{~m} \times 59 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 27-03-02

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is near its safe yield. The efficiency of the pump at its operational point is 58.01%. This delivery head of the pump is underrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $240 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 84 \mathrm{~kW}$.

Laventure BH 11A (CEB Acc:)

The Borehole characteristics are:
Borehole Depth: 39.6 m
Dynamic Water Level: m
Safe Yield: $27 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $20 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 18.5 \mathrm{~kW}$
Pump Make: Super D
Date Installed: 22-10-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. However, the intersection between the system curve and theoretical pump curve is near its safe yield. The efficiency of the pump at its operational point is 30.99%. the installed motor is overrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $30 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 11 \mathrm{~kW}$.

2.4 Analysis for sites under M\&E South

The following sites have been omitted for the respective reasons:

Site	Reason
Choisy Baie Du Cap BH 776	This site has a bypass in the line just after the head plate where some of the pumped water is returned back into the borehole. This bypass is necessary to keep the dynamic water level constant and avoid the pump being switched off due to low water level.
Trois Boutiques BH	This borehole is not connected on the distribution mains
G Bassin	Private Borehole

2.41 Analysis for DWS - South system

Café BH 387 (CEB Acc: 5C6275) \& T Boutiques BH 204 (CEB Acc:5C3165)

These two boreholes separated by some 1.5 km pump onto Mon Desert Reservoir.
The Borehole characteristics are:

	Café 387	T Boutiques 204
Borehole Depth:	36 m	36.8 m
Dynamic Water Level:	13 m	19.4 m
Safe Yield:	$55 \mathrm{~m}^{3} / \mathrm{Hr}$	$250 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$50 \mathrm{~m}^{3} / \mathrm{Hr} \times 50 \mathrm{~m} \mathrm{x} 15 \mathrm{~kW}$	$220 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \times 66 \mathrm{~kW}$
Pump Make:	Grundfos	Caprari
Date Installed	$02-07-00$	$01-07-99$

Café 387

T Boutiques 204
Based on tests,

- For Café 387, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 30.2%. However, the delivery head of the pump is overrated so that it is operational on the delivery mains being fed by T Boutique BH. (Calculated Pressure at junction of Café to Trois Boutiques Line: 5 Bar)
- For T Boutiques, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 66%. This pump is rated correctly and performing efficiently.

Cluny 217 A, B \& C (CEB Acc:5C3152)

This site has three boreholes. BH 217A and BH 217B operate simultaneously and feed New Cluny reservoir, whereas BH 217C feeds directly on the distribution mains

	$\mathbf{2 1 7 A}$	$\mathbf{2 1 7 B}$	$\mathbf{2 1 7 C}$
Borehole Depth:	42.6 m	45.72 m	45 m
Dynamic Water Level:	11.2 m	11.69 m	6.48 m
Safe Yield:	$300 \mathrm{~m}^{3} / \mathrm{Hr}$	$300 \mathrm{~m}^{3} / \mathrm{Hr}$	$300 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$300 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m}$ x 92 kW	$275 \mathrm{~m}^{3} / \mathrm{Hr} \times 75$ m x 92 kW	$393 \mathrm{~m}^{3} / \mathrm{Hr} \times 40$ mx 75 kW
Pump Make:	Caprari	Caprari	Caprari
Date Installed	$08-06-04$	$27-05-97$	$01-04-05$

Cluny 217A

Cluny 217B

Cluny 217C

Based on tests,

- For Cluny 217A, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 70.7%.
- For Cluny 217B, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. There is no intersection between the system curve and theoretical pump curve. The efficiency of the pump at its operational point is 38.7%.
- For both the above sites, it is found that the delivery head of the pumps are overrated. Based on a pump efficiency of 70% and available motor rating would be $300 \mathrm{~m}^{3} / \mathrm{Hr} \mathrm{x}$ 40 m x 52 kW
- For Cluny 217 C , it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 86.4%. The electrical motor of this pump is overrated. The recommended pump at the safe yield, based on a pump efficiency of 70% and available motor rating would be $300 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 52 \mathrm{~kW}$.

Gebert BH 667 (CEB Acc: 5C5964)
The Borehole characteristics are:
Borehole Depth: 82 m
Dynamic Water Level: 45 m
Maximum Borehole Production: $245 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $150 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 45 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 24-03-99

The theoretical pump curve of this pump was not available, the suggested alternative pump curve by the supplier shows that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. However, the intersection between the system curve and the actual pump operating curve is within the range of the safe yield. The efficiency of the pump at its operational point is 58.6%. Based on a pump efficiency of 70% and available motor rating a pump of rating $150 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times 37 \mathrm{~kW}$ is recommended

Nouvelle France BH 725 (CEB Acc:5C6940)
The Borehole characteristics are:
Borehole Depth: 76.74 m
Dynamic Water Level: 54 m
Safe Yield: $267 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $252 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 92 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 19-11-01

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 70.4%. This pump is correctly rated and performing efficiently.

Mon Desert Mon Tresor - Plaisance BH 548 A \& B (CEB Acc: 5C6067)

This site has two boreholes which are being operated simultaneously:

	BH 548A	BH548B
Borehole Depth:	30.48 m	30.13 m
Dynamic Water Level:	19 m	20 m
Safe Yield:	$30 \mathrm{~m}^{3} / \mathrm{Hr}$	$30 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$30 \mathrm{~m}^{3} / \mathrm{Hr} \times 50 \mathrm{~m} \mathrm{x} \mathrm{7.5} \mathrm{~kW}$	$45 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 7.5 \mathrm{~kW}$
Pump Make:	Caprari	Rovatti
Date Installed:	$25-04-00$	$14-03-02$

MDMT 548A

MDMT 548B

Based on tests,

- For MDMT548A, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. There is no intersection between the system curve and theoretical pump curve. The efficiency of the pump at its operational point is 31.6\%.
- For MDMT 548B, the theoretical pump curve is not available. The efficiency of the pump at its operational point is 25%.
- For both the above sites, it is found that the delivery head of the pumps are overrated. Based on a pump efficiency of 70% and available motor rating the required pump would be $30 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \times 5.5 \mathrm{~kW}$

2.42 Analysis for MAV - Upper system

Alma BH 316A (CEB Acc: 3C7476)
The Borehole characteristics are:
Borehole Depth: 40 m
Dynamic Water Level: 32 m
Safe Yield: $25 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $20 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 7.5 \mathrm{~kW}$
Pump Make: Super D
Date Installed: 14-04-97

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above the safe yield. The efficiency of the pump at its operational point is 39.6%. Based on a pump efficiency of 70% and available motor rating a pump of rating $25 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \times$ 5.5 kW is recommended

Beard BH 715 \& 828 (CEB Acc:4C6761)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 715	BH828
Borehole Depth:	60 m	117 m
Dynamic Water Level:	43.1 m	83.59 m
Safe Yield:	$250 \mathrm{~m}^{3} / \mathrm{Hr}$	$209 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$250 \mathrm{~m}^{3} / \mathrm{Hr} \times 85 \mathrm{~m} \mathrm{x} 92 \mathrm{~kW}$	$210 \mathrm{~m}^{3} / \mathrm{Hr} \times 110 \mathrm{~m} \mathrm{x} 92 \mathrm{~kW}$
Pump Make:	KSB	Caprari
Installed Date:	$10-06-05$	$19-11-01$

Beard 715

Beard 828

Based on tests,

- For Beard 715, the theoretical pump curve is not available. This site has been continuously producing above $250 \mathrm{~m}^{3} / \mathrm{Hr}$ without any drop in water level. The efficiency of the pump at its operational point is 58.6%.
- For Beard 828 it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 44.7%. This borehole has been continuously producing above 209 $\mathrm{m}^{3} / \mathrm{Hr}$ without any drastic drop in water level.

Bonne Veine BH 623 \& 619 (CEB Acc:5C6275)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 623	BH 619
Borehole Depth:	50.6 m	52 m
Dynamic Water Level:	9.35 m	7.71 m
Safe Yield:	$96 \mathrm{~m}^{3} / \mathrm{Hr}$	$114 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$70 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \mathrm{x} 30 \mathrm{~kW}$	$90 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make:	Caprari	Saer
Date Installed	$10-01-02$	$13-10-05$

B Veine 623

B Veine 619

- For Bonne Veine 623, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 73.5%.
- For Bonne Veine 619, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 54.5%.

Montee Du Fil BH 488A \& 488C (CEB Acc:4C3082)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 488A	BH 488C
Borehole Depth:	48.1 m	42 m
Dynamic Water Level:	23.5 m	24.4 m
Safe Yield:	$348 \mathrm{~m}^{3} / \mathrm{Hr}$	$348 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$394 \mathrm{~m}^{3} / \mathrm{Hr} \times 38.5 \mathrm{~m} \mathrm{x} 85 \mathrm{~kW}$	$175 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \mathrm{x} 26 \mathrm{~kW}$
Pump Make:	British Pleuger	Caprari
Date Installed	Year 88	$21-07-00$

Montee Du Fil 488A

Montee Du Fil 488C

- For Montee Du Fil 488A, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 52.9%.
- For Montee Du Fil 488C, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. Moreover, the intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 88%.

2.43 Analysis for MAV - Lower system

Bambou Eau Bonne BH 247A (CEB Acc:3C4041)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 247A	BH247B
Borehole Depth:	23.8 m	26.3 m
Dynamic Water Level:	12 m	13 m
Safe Yield:	$120 \mathrm{~m}^{3} / \mathrm{Hr}$	$160 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$125 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \mathrm{x} 55 \mathrm{~kW}$	$275 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \mathrm{x} \mathrm{75} \mathrm{kW}$
Pump Make:	Rovatti	Caprari
Date Installed	$24-04-03$	$03-09-02$

247-A

247-B
Based on tests,

- For Eau Bonne 247-A, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 68.2%.
- For Eau Bonne 247-B, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 59.7%. This pump is however overrated and the recommended pump, based on a pump efficiency of 70% and available motor rating is $160 \mathrm{~m}^{3} / \mathrm{Hr} \times 90$ m x 56 kW

Barkly (Herchenroeder) BH 664 (CEB Acc: 3C5878)

The Borehole characteristics are:
Borehole Depth: 72 m
Dynamic Water Level: 49 m
Safe Yield: $250 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $180 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 51 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 04-11-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The theoretical yield of $250 \mathrm{~m}^{3} / \mathrm{Hr}$ is rarely achieved. The production has been around $180 \mathrm{~m}^{3} / \mathrm{Hr}$. The intersection between the system curve and theoretical pump curve is near the yield of $180 \mathrm{~m}^{3} / \mathrm{Hr}$. The efficiency of the pump at its operational point is 45.4%. Based on a pump efficiency of 70% and available motor rating a pump of rating 180 $\mathrm{m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \times 42 \mathrm{~kW}$ is recommended.

Barkly Swimming Pool BH 501 (CEB Acc:3C3223)

The Borehole characteristics are:
Borehole Depth: 44 m
Dynamic Water Level: 32.88 m
Safe Yield: $90 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 37 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 14-05-05

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating on its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 13.2%. Based on a pump efficiency of 70% and available motor rating a pump of rating $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 90 \mathrm{~m} \times 32 \mathrm{~kW}$ is recommended.

Bassin BH 432 A \& B (CEB Acc:7C3894), 717(CEB Acc:7C3798)
This site has four boreholes which are used in parallel. The Borehole characteristics are:

	BH 432A	BH432B	BH 717
Borehole Depth:	53.6 m	54.1 m	143 m
Dynamic Water Level:	33.3 m	31.29 m	61.62 m
Safe Yield:	$330 \mathrm{~m}^{3} / \mathrm{Hr}$	$330 \mathrm{~m}^{3} / \mathrm{Hr}$	$191 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$393 \mathrm{~m}^{3} / \mathrm{Hr} \times 74 \mathrm{mx} 110 \mathrm{~kW}$	$350 \mathrm{~m}^{3} / \mathrm{Hr} \times 72 \mathrm{~m}$ x 110 kW	$300 \mathrm{~m}^{3} / \mathrm{Hr} \mathrm{x}$ 100 m x 92 kW
Pump Make:	Caprari	Caprari	Caprari
Date Installed:	$28-10-05$	$22-09-06$	$4-10-05$

Bassin 432A

Bassin 432B

Bassin 717

Based on tests,

- For Bassin 432A, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 64%.
- For Bassin 432B, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 62.5%. This pump has been overrated to compensate the head required to operate in parallel with Bassin 432A, Bassin 435 and Bassin 717.
- For Bassin 717, the theoretical pump curve is not available. The efficiency of the pump at its operational point is 77%.

Chamarel BH 796 (CEB Acc:7090003261(5))
The Borehole characteristics are:
Borehole Depth: 87 m
Dynamic Water Level: 46 m
Safe Yield: $18.7 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $21 \mathrm{~m}^{3} / \mathrm{Hr} \times 87 \mathrm{~m} \times 7.5 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 23-01-06

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 74.2%.

Clairfonds BH 176A \& 176C (CEB Acc:4C1520)

This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 176A	BH176C
Borehole Depth:	48.7 m	45.7 m
Dynamic Water Level:	30.7 m	36.9 m
Safe Yield:	$90 \mathrm{~m}^{3} / \mathrm{Hr}$	$90 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$180 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \mathrm{x} 26 \mathrm{~kW}$	$90 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \mathrm{x} 11 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed	$20-07-05$	$04-08-05$

Clairfonds 176A

Clairfonds 176C
Based on tests,

- For Clairfonds 176A, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 38.4%. This pump is overrated and the recommended pump, based on a pump efficiency of 70% and available motor rating is $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 50 \mathrm{~m} \times 22 \mathrm{~kW}$
- For Clairfonds 176 C , it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 59.2%.

Ebene BH 477 \& 659 (CEB Acc: 7C4864)

This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 477	BH659
Borehole Depth:	48.7 m	51.5 m
Dynamic Water Level:	38 m	40 m
Safe Yield:	$60 \mathrm{~m}^{3} / \mathrm{Hr}$	$60 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$55 \mathrm{~m}^{3} / \mathrm{Hr} \times 45 \mathrm{~m} \mathrm{x} \mathrm{11} \mathrm{kW}$	$60 \mathrm{~m}^{3} / \mathrm{Hr} \times 46 \mathrm{~m} \times 13 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed	$19-12-98$	$19-12-96$

Ebene 477

Ebene 659
Based on tests,

- For Ebene 477, it is found that the Installed Pump Hydraulic Capacity was not performing at all. It has been replaced by a new pump of make Saer and rated at 55 $\mathrm{m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 13 \mathrm{~kW}$. The delivery head of this newly Installed Pump Hydraulic Capacity is overrated. The required pump for this borehole is $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times$ 11 kW .
- For Ebene 659, it is found that the pump is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 50.7%.

Highlands BH 392 A \& B (CEB Acc: 7C3694)

This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 392A	BH3 92B
Borehole Depth:	36.12 m	38.1 m
Dynamic Water Level:	22.2 m	32.6 m
Safe Yield:	$92 \mathrm{~m}^{3} / \mathrm{Hr}$	$92 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$100 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \times 11 \mathrm{~kW}$	$90 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 15 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed:	$02-11-00$	$19-11-03$

Highlands 392A

Highlands 392B

Based on tests,

- It is found that the pump installed on Highlands 392 A is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 67.6%.
- The pump for Highlands 392B is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 79.5%.

Holyrood BH 35 A, B, D, E \& 947(CEB Acc: 7C1530)

This site has five boreholes which are used in parallel. The Borehole characteristics are:

	BH 35A	BH35B	BH 35D	BH 35E
Borehole Depth:	35.9 m	36.7 m	39.6 m	73 m
Dynamic Water Level:	19.4 m	16.22 m	19.1 m	16.08 m
Safe Yield:	$90 \mathrm{~m}^{3} / \mathrm{Hr}$	$180 \mathrm{~m}^{3} / \mathrm{Hr}$	$180 \mathrm{~m}^{3} / \mathrm{Hr}$	$310 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$90 \mathrm{~m}^{3} / \mathrm{Hr} \mathrm{x} \mathrm{43}$ m x 21 kW	$180 \mathrm{~m}^{3} / \mathrm{Hr} \mathrm{x} 37$ m x 26 kW	$180 \mathrm{~m}^{3} / \mathrm{Hr}$ x 30 m x 22 kW	$180 \mathrm{~m}^{3} / \mathrm{Hr}$ x 40 m x 26 kW
Pump Make:	KSB	Caprari	Caprari	Caprari
Date Installed:	$12-08-94$	$31-01-06$	$22-11-99$	$10-11-04$

Holyrood 35 A

Holyrood 35 B

Holyrood 35D

Holyrood 35E

Based on tests,

- The theoretical pump curve for this site is not available. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 50.6%.
- The pump for Holyrood 35B is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 73.2%.
- The pump for Holyrood 35D is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 90.2%.
- The pump for Holyrood 35E is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 61.6%.

Holyrood BH 826 (CEB Acc: 7C1530)
The Borehole characteristics are:
Borehole Depth: 102 m
Dynamic Water Level: 27.57 m
Safe Yield: $243 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $300 \mathrm{~m}^{3} / \mathrm{Hr} \times 34 \mathrm{~m} x 45 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 25-11-99

Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 30.6%. The recommended pump, based on a pump efficiency of 70% and available motor rating is 250 $\mathrm{m}^{3} / \mathrm{Hr} x 40 \mathrm{~m}$ x 45 kW

Holyrood BH 947 (CEB Acc: 7C1530)
The Borehole characteristics are:
Borehole Depth: 87 m
Dynamic Water Level: 32.46 m
Safe Yield: $220 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $230 \mathrm{~m}^{3} / \mathrm{Hr} \times 66 \mathrm{~m} \times 55 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 23-10-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 51.2%.

Bassin 435 \& Palma BH 73(CEB Acc: 7C1831)
The Borehole characteristics are:

	BH 435	BH 73
Borehole Depth:	58 m	36.5 m
Dynamic Water Level:	44 m	16.8 m
Safe Yield:	$90 \mathrm{~m}^{3} / \mathrm{Hr}$	$135 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$90 \mathrm{~m}^{3} / \mathrm{Hr} \times 54 \mathrm{~m} \times 22 \mathrm{~kW}$	$55 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \mathrm{x} 13 \mathrm{~kW}$
Pump Make:	Caprari	Jetspa
Date Installed:	$18-06-04$	$14-03-00$

Bassin 435

Palma 73

Based on tests,

- It is found that the Pump for Bassin 435 is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 42.3%. this pump has been oversized so that it can be operated in parallel with the pump installed at Palma BH 73
- It is found that the pump for Palma 73 is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 54.4%.

Palmyre BH 26B (CEB Acc: 7C4198)
The Borehole characteristics are:
Borehole Depth: 36.58 m
Dynamic Water Level: 16 m
Safe Yield: $66 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $90 \mathrm{~m}^{3} / \mathrm{Hr} \times 26 \mathrm{~m} \times 9.2 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 19-08-04

Palmyre 26B
Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 53.7%.

Palmyre BH 419 (CEB Acc:7130001303-6)
The Borehole characteristics are:
Borehole Depth: 37 m
Dynamic Water Level: 23 m
Safe Yield: $54 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $40 \mathrm{~m}^{3} / \mathrm{Hr} \times 55 \mathrm{~m} \times 11 \mathrm{~kW}$
Pump Make: Super D
Date Installed: 15-05-97

Palmyre 419
Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 53.8%.

Palmyre BH 827 (CEB Acc:7C7469)
The Borehole characteristics are:
Borehole Depth: 117 m
Dynamic Water Level: 69.5 m
Safe Yield: $60 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $55 \mathrm{~m}^{3} / \mathrm{Hr} \times 110 \mathrm{~m} \times 26 \mathrm{~kW}$
Pump Make: Rovatti
Date Installed: 22-02-02

Palmyre 827
Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 49.7%.

Solferino BH 403 (CEB Acc: 7C6567)

The Borehole characteristics are:
Borehole Depth: 37.4 m
Dynamic Water Level: 23 m
Safe Yield: $70 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $70 \mathrm{~m}^{3} / \mathrm{Hr} \times 58 \mathrm{~m} \times 22 \mathrm{~kW}$
Pump Make: Caprari
Date Installed: 18-05-04

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 73.2%.

Solferino Dookhun BH 359A \& 359B (CEB Acc: 7C1529)

	BH 359A	BH 359B
Borehole Depth:	34.25 m	$38 . \mathrm{m}$
Dynamic Water Level:	30.85 m	24.69 m
Safe Yield:	$162 \mathrm{~m}^{3} / \mathrm{Hr}$	$162 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$108 \mathrm{~m}^{3} / \mathrm{Hr} \times 32 \mathrm{~m} \mathrm{x} 19 \mathrm{~kW}$	$200 \mathrm{~m}^{3} / \mathrm{Hr} \times 35 \mathrm{~m} \mathrm{x} \mathrm{30} \mathrm{kW}$
Pump Make:	British Pleuger	Caprari
Date Installed:	$21-01-88$	$09-11-97$

Solferino Dookhun BH 359A

Solferino Dookhun BH 359B

Based on tests,

- For Solferino Dookhun 359A, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 24.3%. The required pump for this borehole based on a pump efficiency of 70% and available motor is $160 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 22 \mathrm{~kW}$.
- For Solferino Dookhun 359B, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 25.7%. The required pump for this borehole based on a pump efficiency of 70% and available motor is $160 \mathrm{~m}^{3} / \mathrm{Hr} \times 40 \mathrm{~m} \times 22 \mathrm{~kW}$.

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II
St Paul BH 153A \& 153D (CEB Acc: 4C1120)

	BH 153A	BH 153D
Borehole Depth:	36.6 m	37.4 m
Dynamic Water Level:	23.5 m	29.2 m
Safe Yield:	$102 \mathrm{~m}^{3} / \mathrm{Hr}$	$102 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$125 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \mathrm{x} 18.6 \mathrm{~kW}$	$125 \mathrm{~m}^{3} / \mathrm{Hr} \times 35 \mathrm{~m} \times 18.5 \mathrm{~kW}$
Pump Make:	Hyward Tylor	Caprari
Date Installed:	$19-02-94$	$01-03-02$

St Paul 153A

St Paul 153D

Based on tests,

- For St Paul 153A, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 66.7%.
- For St Paul 153D, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 65%.

Telfair BH 521(CEB Acc: 3C3811)
This site has two boreholes which operate in parallel and the Borehole characteristics are:

	BH 521	BH 531
Borehole Depth:	50 m	43.15 m
Dynamic Water Level:	29 m	29 m
Safe Yield:	$60 \mathrm{~m}^{3} / \mathrm{Hr}$	$60 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$55 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \mathrm{x} \mathrm{22} \mathrm{kW}$	$72 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \mathrm{x} 30 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed:	$28-09-00$	$05-03-99$

Telfair 521

Telfair 531
Based on tests,

- For Telfair 521, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 44.8%. The required pump for this borehole based on a pump efficiency of 70% and available motor is $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 22 \mathrm{~kW}$.
- For Telfair 531, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 43.4%. The required pump for this borehole based on a pump efficiency of 70% and available motor is $60 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \times 22 \mathrm{~kW}$.

Trianon BH 738 \& 903 (CEB Acc: 7C7418)
This site has two boreholes separated by a distance of 800 m and are operated in parallel. The Borehole characteristics are:

	BH 738	BH 903
Borehole Depth:	118.5 m	113 m
Dynamic Water Level:	42.9 m	55.7 m
Safe Yield:	$246 \mathrm{~m}^{3} / \mathrm{Hr}$	$130 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$250 \mathrm{~m}^{3} / \mathrm{Hr} \times 60 \mathrm{~m} \mathrm{x} 59 \mathrm{~kW}$	$135 \mathrm{~m}^{3} / \mathrm{Hr} \times 80 \mathrm{~m} \mathrm{x} 45 \mathrm{~kW}$
Pump Make:	Caprari	Caprari
Date Installed:	$11-11-99$	$09-11-04$

Trianon 738

Trianon 903

Based on tests,

- For Trianon 738, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 61%.
- For Trianon 903, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 90%.

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II
Valentina (Lower) BH 390 \& 390A (CEB Acc:7C4896)
This site has two boreholes and only one is used at a time. The Borehole characteristics are:

	BH 390	BH 390A
Borehole Depth:	36 m	39.4 m
Dynamic Water Level:	6.8 m	6.86 m
Safe Yield:	$116 \mathrm{~m}^{3} / \mathrm{Hr}$	$65 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$100 \mathrm{~m}^{3} / \mathrm{Hr} \times 30 \mathrm{~m} \times 11 \mathrm{~kW}$	$182 \mathrm{~m}^{3} / \mathrm{Hr} \times 37 \mathrm{~m} \times 30 \mathrm{~kW}$
Pump Make:	Caprari	British Pleuger
Date Installed:	$14-10-02$	$18-12-87$

Valentina 390

Valentina 390A
Based on tests,

- For Valentina 390, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is below the safe yield. The efficiency of the pump at its operational point is 57%.
- For Valentina 390A, the theoretical pump curve is not available. This pump is being replaced by the Central Water Authority due to old age.

Valentina BH 733 (CEB Acc:7C7352)
The Borehole characteristics are:
Borehole Depth: 57 m
Dynamic Water Level: 34.2 m
Safe Yield: $78 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $80 \mathrm{~m}^{3} / \mathrm{Hr} \times 70 \mathrm{~m} \times 22 \mathrm{~kW}$
Pump Make: Jetspa
Date Installed: 01-10-99

Valentina 733
Based on tests, it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is well above safe yield. The efficiency of the pump at its operational point is 61.8%.

Yemen BH 594B \& 569C (CEB Acc: 7C5296)
This site has two boreholes. Only one borehole is used at a time and the Borehole characteristics are:

	BH 594B	BH 569C
Borehole Depth:	23.5 m	24.86 m
Dynamic Water Level:	8.15 m	3.67 m
Safe Yield:	$55 \mathrm{~m}^{3} / \mathrm{Hr}$	$96 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity:	$55 \mathrm{~m}^{3} / \mathrm{Hr} \times 75 \mathrm{~m} \mathrm{x} 15 \mathrm{~kW}$	$110 \mathrm{~m}^{3} / \mathrm{Hr} \times 100 \mathrm{~m} \mathrm{x} 45 \mathrm{~kW}$
Pump Make:	Caprari	Rovatti
Date Installed:	$16-05-00$	$01-11-05$

Yemen 594 B

Yemen 569C

Based on tests,

- For Yemen 594B, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near the safe yield. The efficiency of the pump at its operational point is 57%.
- For Yemen 569 C , it is found that the Installed Pump Hydraulic Capacity is not operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is above the safe yield. The efficiency of the pump at its operational point is 70.4%.

Yemen BH 853 (CEB Acc: 7C6567)
The Borehole characteristics are:
Borehole Depth: 19 m
Dynamic Water Level: 9.31 m
Safe Yield: $110 \mathrm{~m}^{3} / \mathrm{Hr}$
Installed Pump Hydraulic Capacity: $110 \mathrm{~m}^{3} / \mathrm{Hr} x 100 \mathrm{~m} x 37 \mathrm{~kW}$
Pump Make: Saer
Date Installed: 27-10-05

Based on tests, it is found that the Installed Pump Hydraulic Capacity is operating near its theoretical pump curve. The intersection between the system curve and theoretical pump curve is near safe yield. The efficiency of the pump at its operational point is 65.3%.

Project-Energy Auditing, Management \& Efficiency at
 CWA - Pumping Stations- Phase II
 CHAPTER 3
 Summary of Results

3.1 Introduction.

This chapter relates to a summary of findings observed at Chapter 2 and the calculation of the energy savings that can be realized.

3.2 Pumps requiring replacement but with no expected energy savings.

Based on the pumping tests carried out on the different submersible pumps being used at the Central Water Authority (CWA) all pumps, having an efficiency of below 50% at its operational point, have been recommended for replacement. The replacement of these pumps will not lead directly to energy savings but their outputs (flow \& head delivered) will increase and it will bring additional revenue to the CWA.

Pumps having the required hydraulic rating, but having an oversized motor and also a low pumping efficiency have been included in this list. The replacement of these pumps will not lead to energy savings despite the motor power rating being oversized by a single step of available motors; such electrical consumption of this oversized motor is comparable to the correct sized motor.

It is also included in this list the oversized standby pumps. Although, the replacement pump is smaller in size, no expected savings is derived from these as the original pump has not been in use.

These concerned sites are given hereunder:
a) M\&E (North)

$\begin{aligned} & \text { Ser } \\ & \text { No } \end{aligned}$	Site	BH No	Installed Pump Capacity ($\mathrm{m}^{3} / \mathrm{hr} \mathrm{x} \mathrm{m} \mathrm{x} \mathrm{kW)}$	$\begin{gathered} \text { Installed } \\ \text { Pump } \\ \text { Make/Origin } \end{gathered}$	Recommended Pump Capacity $\left(\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}\right)$
1	Camp La Boue	SW26	$20 \times 75 \times 5.6$	Super D	$25 \times 80 \times 15$
2	Fond Du Sac (Forbach)	743	$240 \times 60 \times 55$	Rovatti	$260 \times 70 \times 70$
3	Mapou	558	$75 \times 75 \times 20$	Caprari	$65 \times 85 \times 22$

b) M\&E (South)

Ser No	Site	BH No	Installed Pump Capacity $\left(\mathbf{m}^{3} / \mathrm{hr} \times \mathbf{m} \mathbf{~ k W}\right)$	Installed Pump Make/Origin	Recommended Pump Capacity $\left(\mathbf{m}^{3} / \mathrm{hr} \mathbf{~ x ~ m ~ x ~ k W) ~}\right.$
1	Barkly BH	664	$180 \times 80 \times 51$	Caprari	$180 \times 80 \times 42$
2	Ebene	477	$55 \times 70 \times 13$	Saer	$60 \times 40 \times 11$
3	Clairfonds	176 A	$180 \times 40 \times 26 \mathrm{~kW}$	Caprari	$90 \times 50 \times 22$
4	Solferino (Dookhun)	359 A	$108 \times 32 \times 19 \mathrm{~kW}$	British Pleuger	$160 \times 40 \times 22$
5	Telfair	521	$55 \times 100 \times 22 \mathrm{~kW}$	Caprari	$60 \times 100 \times 22$
6	Telfair	531	$72 \times 100 \times 30 \mathrm{~kW}$	Caprari	$60 \times 100 \times 22$

3.3 Replacement of oversized Pumps

From the analysis done at chapter 2 , it was also observed that certain submersible pumps are oversized with regard to the hydraulic capacity. The sizing of the pump has been done based on the system curve of the distribution line and the safe yield of the borehole. The replacement of these pumps will reduce the electrical consumption and thus it will make potential savings of electrical energy cost to the CWA. The expected savings cost is calculated using the following formula and is based on CEB Tariff 313 for maximum kVA demand for industrial consumers:

Annual Savings (Rs) = Savings on Active Billing + Savings on Maximum kVA Demand.
Savings on Active Billing = Power Savings (kW) x 24hrs x 365days x Rs 2.08per $k W H$
Savings on Maximum kVA Demand $=($ Power Savings $(k W) / 0.8) \times$ Rs105per $k V A x$ 12Months

- The concerned pumps requiring replacement are given hereunder: -

M\&E (North)

$\begin{aligned} & \text { Ser } \\ & \text { No } \\ & \hline \end{aligned}$	Site	BH No	$\begin{aligned} & \text { Installed Pump } \\ & \text { capacity } \\ & \left(\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}\right) \end{aligned}$	Recommended Pump capacity ($\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{mx}$ kW)	Expected Power Savings (kW)	Expected Annual Savings (kWh)	Expected Annual Savings (Rs)
1	Beau Bois	825	$50 \times 150 \times 30$	$40 \times 100 \times 18.5$	11.5	100,740	227,651.70
2	Beau Bois	76B	$20 \times 91 \times 11$	$15 \times 80 \times 7.5$	3.5	30,660	69,285.30
3	St Martin	367B	$120 \times 90 \times 45$	$120 \times 50 \times 26$	19	166,440	376,120.20
4	Bois Mangues	12	$60 \times 70 \times 22$	$50 \times 60 \times 15$	7	61,320	138,570.60

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II

$\begin{aligned} & \text { Ser } \\ & \text { No } \\ & \hline \end{aligned}$	Site	BH No	Installed Pump capacity $\left(\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}\right)$	Recommended Pump capacity ($\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{mx}$ kW)	Expected Power Savings (kW)	Expected Annual Savings (kWh)	Expected Annual Savings (Rs)
5	Haute Rive	391B	$80 \times 70 \times 22$	$60 \times 70 \times 18.5$	3.5	30,660	69,285.30
6	La Clemence	692	$60 \times 70 \times 22$	$50 \times 60 \times 15$	7	61,320	138,570.60
7	Morcellement	309A	$45 \times 40 \times 11$	$45 \times 40 \times 7.5$	3.5	30,660	69,285.30
8	Morcellement	309B	$25 \times 40 \times 9.2$	$46 \times 40 \times 7.5$	1.7	14,892	33,652.86
10	Camp Thorel	754	$330 \times 105 \times 132$	$240 \times 110 \times 110$	22	192,720	435,507.60
11	Esp Trebuchet	537A	$90 \times 55 \times 18.5$	$110 \times 35 \times 15$	3.5	30,660	69,285.30
12	Fond Du Sac	No1	$100 \times 95 \times 30$	$72 \times 80 \times 22$	8	70,080	158,366.40
13	Poudre D'Or	752	$306 \times 70 \times 75$	$270 \times 60 \times 65$	10	87,600	197,958.00
14	Poudre D'Or	123(i)	$50 \times 60 \times 15$	$60 \times 40 \times 11$	4	35,040	79,183.20
15	Poudre D'Or	123(iii)	$180 \times 40 \times 26$	$120 \times 40 \times 22$	4	35,040	79,183.20
16	Poudre D'Or	123(iv)	$180 \times 40 \times 30$	$180 \times 40 \times 26$	4	35,040	79,183.20
17	Petite Retraite		$275 \times 65 \times 66$	$210 \times 40 \times 32$	34	297,840	673,057.20
18	Petite Retraite		$150 \times 80 \times 45$	$210 \times 40 \times 32$	13	113,880	257,345.40
19	Laventure	11A	$20 \times 90 \times 18.5$	$30 \times 80 \times 11 \mathrm{~kW}$	7.5	65,700	148,468.50
20	Bonne Mere	492A	$275 \times 75 \times 75$	$275 \times 60 \times 66$	9	78,840	178,162.20
21	Bonne Mere	492B	$275 \times 75 \times 75$	$275 \times 60 \times 66$	9	78,840	178,162.20
Total Savings Envisaged						1,617,972	3,656,284.26

M\&E (South)

$\begin{aligned} & \text { Ser } \\ & \text { No } \\ & \hline \end{aligned}$	Site	$\begin{aligned} & \mathrm{BH} \\ & \mathrm{No} \\ & \hline \end{aligned}$	Installed Pump capacity $\left(\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times\right.$ kW)	Recommended Pump capacity ($\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}$)	Expected Power Savings (kW)	Expected Annual Savings (kWh)	Expected Annual Savings (Rs)
1		217A	$300 \times 60 \times 92$	$300 \times 40 \times 52$	40	350,400	791,832.00
2		217B	$275 \times 75 \times 92$	$300 \times 40 \times 52$	40	350,400	791,832.00
3	Cluny	217C	$393 \times 40 \times 75$	$300 \times 40 \times 52$	23	201,480	455,303.40
4	Gebert	667	$150 \times 80 \times 45$	$150 \times 60 \times 37$	8	70,080	158,366.40

$\begin{aligned} & \text { Ser } \\ & \text { No } \\ & \hline \end{aligned}$	Site	$\begin{aligned} & \mathrm{BH} \\ & \text { No } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Installed Pump } \\ \text { capacity } \\ \left(\mathbf{m}^{3} / \mathrm{hr} \times \mathrm{m} \times\right. \\ \mathrm{kW}) \\ \hline \end{gathered}$	Recommended Pump capacity ($\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}$)	Expected Power Savings (kW)	Expected Annual Savings (kWh)	Expected Annual Savings (Rs)
5	Mon Desert Mon Tresor	548A	$30 \times 50 \times 7.5$	$30 \times 30 \times 5.5$	2	17,520	39,591.60
6		548B	$45 \times 40 \times 7.5$	$30 \times 30 \times 5.5$	2	17,520	39,591.60
7	Eau Bonne No2	247B	$275 \times 75 \times 75$	$160 \times 90 \times 56$	19	166,440	376,120.20
8	Barkly SP	501	$90 \times 100 \times 37$	$90 \times 90 \times 32$	5	43,800	98,979.00
9	Solferino Dookhun	359B	$200 \times 35 \times 30$	$160 \times 40 \times 22$	8	70,080	158,366.40
				Total Savings Envisaged		1,287,720	2,909,982.60

3.4 Variable Speed Drives.

An ideal distribution system is such that a submersible supplies to a service reservoir and the latter feeds the distribution mains by gravity. However, this case is not always possible and the Central Water Authority has around 19 sites, whereby the submersible pump is connected directly in the distribution mains. In such cases, the System Curves vary due to additional restriction being added on the consumption at the end of the distribution line. For such cases, as described at 'chapter 1' additional energy savings can be done by using a variable speed drive (VSD) unit to operate the submersible pump. This operation is a closed loop control using a pressure feedback from a Pressure Transducer installed on the distribution line, i.e. the VSD will read the pressure in the distribution line and it will compensate any rise in pressure that occurs during the night, by running the submersible pump at a lower speed. Likewise, during the daytime the variable speed drive will run the submersible pump at a higher speed when the pressure on the distribution line falls.
The Variable Speed Drive will provide the following advantages:

- Reduced power consumption of the pump
- Reduced leakage (by running the submersible pump at a lower speed, and pressure)
- Increased lifetime of the submersible pump.

As per comments made at para 3.5 above and 1.10 in chapter 1 , to cater for changes in the characteristic of the distribution line due to variation in Dynamic Water level. For instance, in wet season the Dynamic Water Level at Holyrood BH35E is 16.1 m and it drops down to 39 m in dry season. The System Curves for these two situations are given hereunder: -

Under such situation, at a Dynamic Water Level of 16.1 m , the installed submersible pump will deliver the rated flow, but when the Dynamic Water Level drops, in order to compensate the static head required, the flow ($\mathrm{Q}-\mathrm{m}^{3} / \mathrm{hr}$) will be lower. In order to avoid such situation, and have maximum exploitation of the borehole, it s recommended to oversize the hydraulic capacity of the submersible pump. Thus, it is recommended to use a Variable Speed Drive fitted to the existing submersible pump. During wet season, the submersible pump is made to run at a lower speed and during dry season, when the Dynamic Water level drops, the pump speed is then accelerated to compensate the additional required static head.
However, this proposal needs to be fully investigated by an onsite test as and when the water level drops down; the borehole yield is expected to decrease. The contribution of the Water Resources Unit shall is required to assist the proposed test.

3.5 Calculation for over sizing of pump to compensate drop in Dynamic Water Level

Pump Manufacturers recommend that a submersible pump shall not be operated at a speed frequency lower than 35 Hz so that cooling of the electric motor is not affected. Thus, the pump is designed to work at a frequency of 35 Hz during wet seasons. A typical example is Holyrood BH 35E,

At a DWL of 16.1 m the recommended pump capacity is $180 \mathrm{~m}^{3} / \mathrm{hr} \times 40 \mathrm{~m}$ at 35 Hz Using laws of Affinity, the recommended pump becomes $260 \mathrm{~m}^{3} / \mathrm{hr} \times 60 \mathrm{~m}$ at 50 Hz .
The variation of the pump curve rated at $260 \mathrm{~m}^{3} / \mathrm{hr} \times 60 \mathrm{~m}$ (Caprari E10S64-2A) running at different speeds is shown below:

The different sites recommended for operation with Variable Speed Drive are as follows:

- Sites pumping directly into the distribution mains are listed hereunder:-

Ser No	Site	Region Served	Ser No	Site	Region Served
$\mathbf{1}$	Cottage (New) BH 564	Surroundings	$\mathbf{1 1}$	La Clemence BH 692	Surroundings
$\mathbf{2}$	Fond Du Sac (Choisy) BH 643	 Trou Aux Biches	$\mathbf{1 2}$	P D’Or No2 BH 123 (ii)	Surroundings
$\mathbf{3}$	Mapou BH558	Surroundings	$\mathbf{1 3}$	Solitude BH 748	Triolet (7 Mile)

Project-Energy Auditing, Management \& Efficiency at
CWA - Pumping Stations- Phase II

Ser No	Site	Region Served	Ser No	Site	Region Served
$\mathbf{4}$	Riche Terre BH 36	Surroundings	$\mathbf{1 4}$	Laventure BH 11A	Surroundings
$\mathbf{5}$	Camp Ithier BH 815	Surroundings	$\mathbf{1 5}$	Gebert BH 667	Mare D'Albert
$\mathbf{6}$	Choisy / Baie Du Cap BH 776	Surroundings	$\mathbf{1 6}$	Mon Loisir BH 720	Surroundings
$\mathbf{7}$	Barkly (Herchenroeder)	 Beau Bassin	$\mathbf{1 7}$	Schoenfeld BH 337	 Riviere Du Rempart
$\mathbf{8}$	Cottage (Poonith) BH 563A	Surroundings	$\mathbf{1 8}$	Caroline BH44	 Bel Air
$\mathbf{9}$	Haute Rive BH 391	Riviere Rempart	$\mathbf{1 9}$	Cluny No3 BH 217C	Riche En Eau
$\mathbf{1 0}$	Barkly (Swimming Pool)	Surroundings			

- Sites experiencing severe drop in Dynamic Water Level are given below:-

$\begin{array}{\|l} \hline \text { Ser } \\ \text { No } \end{array}$	Site	$\begin{aligned} & \text { Ser } \\ & \text { No } \end{aligned}$	Site	$\begin{aligned} & \hline \text { Ser } \\ & \text { No } \end{aligned}$	Site
1	Pierrefonds BH 712	8	Bassin Loulou Jamblon	15	L'Esperance Trebuchet
2	Beau Bois BH 76B	9	$\begin{array}{\|llll\|} \hline \text { Camp } & \text { La } & \text { Boue } & \text { BH } \\ \text { SW26 } & & & \\ \hline \end{array}$	16	Haute \quad Rive BH391
3	Labourdonnais BH551	10	Morcellement St Andre BH117	17	Morcellement St Andre BH 309

$\begin{array}{c}\text { Ser } \\ \text { No }\end{array}$	Site	Ser	Site	Ser	Site
No					

3.6 Benefit Cost Analysis of a Variable Speed Drive v/s Auto Transformer

 Starter.| Ser
 No | Description | Auto Transformer Starter | Variable Speed Drive |
| :---: | :--- | :--- | :--- |
| 1 | Start of Submersible
 Pump | $3 \times$ Nominal Current | Ramp Start |
| 2 | Additional Equipment
 Required | Power Factor Corrector
 required as inductive
 components of starter leads
 to low Power Factor | Unity Power Factor at Input
 of VSD |
| 3 | Harmonic Distortion | Negligible | Expected to be high |

3.7 Cost Analysis:

Ser No	VSD Capacity $(\mathbf{k W})$	Cost of VSD (Rs)	Cost of Autotransformer Starters C/W Power Factor Correctors (Rs)
1	15	$60,000.00$	$68,000.00$
2	30	$97,000.00$	$97,000.00$
3	45	$105,000.00$	$110,000.00$
4	55	$165,000.00$	$130,000.00$
5	92	$220,000.00$	$170,000.00$

3.8 Sites to be operated with Variable Speed Drive:

As mentioned at para 1.11, direct operation of submersible pumps into the distribution mains using Variable Speed Drive will lead to energy savings. The energy savings will be derived from the following situations: -

- lower consumption and operation during the night
- Lower leakage while operation at lower speed during the night.

Based on the analysis of the night flow of these pumps, it is observed that certain sites record a flow reduction of the order of $\mathbf{1 0 \%}$ of the rated flow. However, this analysis has been incomplete due to technical restriction while installing water flow loggers on discharge pipe of the submersible pumps.

The exact analysis on the savings based on reduction of leakage has not been possible but it is estimated to be around a minimum of $\mathbf{1 0 - 1 5 \%}$ reduction in unaccounted water as per the Non Revenue Water Section of the CWA. The savings under this item is not included in this report but it shall be investigated by an onsite test.

- For this purpose, it is proposed to install a Variable Speed Drive unit of capacity 92 $\mathbf{k W}$ using a feedback control based on the pressure on the distribution line at Barkly BH 664. This site has been chosen for trial test as it operates directly onto the distribution line and the level of non - revenue water is at 50% (rounded). For this site, it is also proposed to change the CEB meter, for an electronic meter with which, power monitoring will be easier.
- It is also recommended to install a submersible pump rated at $275 \mathbf{m}^{3} / \mathbf{h r} \mathbf{x} \mathbf{7 5} \mathbf{~ m}$ (available in stock at CWA) and use the same variable speed drive that shall be installed at Barkly BH 664, for the test on the variation of production and power consumption during the year at Holyrood BH 35E. This test shall also require appropriate hydrological studies by the WRU.

The proposed monitoring sheets for the above two (2) tests are given at Annex - 7 and Annex -8 .

Project-Energy Auditing, Management \& Efficiency at
 CWA - Pumping Stations- Phase II

 CHAPTER 4

 CHAPTER 4

 Recommendation

 Recommendation}

4.1 Introduction.

This chapter relates to a summary of findings observed at Chapter 2 and 3 regarding the calculation of the energy savings that can be realized.

4.2 Investment required for replacement of pumps

From the findings done at para 3.3, the estimated savings based on reduction of the annual electrical consumption is Rs $\mathbf{3 , 6 5 6}, \mathbf{2 8 4} .26$, i.e. $\mathbf{1 , 6 1 7 , 9 7 2} \mathbf{k W h}$ for M\&E (North) and Rs $\mathbf{2 , 9 0 9}, \mathbf{9 8 2} .60$ for M\&E (South). The total savings amounts to Rs $\mathbf{6 , 5 6 6}, 266.86$, i.e. 1,287,720 $\mathbf{k W h}$ which is equivalent to $\mathbf{5 . 7 1 \%}$ of the Annual Electricity Budget (Rs 115M). This savings is envisaged based on the replacement of the oversized pumps as listed at para 3.3. The Central Water Authority has already engaged in the replacement of certain submersible pumps and the purchase is being done under the ongoing contract C2006/26 - Supply of Submersible Pumps \& Accessories. Furthermore, it is also found that the available pumps within the CWA are not of appropriate capacity, and therefore it is required to purchase additional pumps. The required investment cost for the replacement of the required submersible pumps is listed hereunder: -

M\&E (North)

Ser No	Site	BH No	Recommended Pump Capacity $\mathbf{m}^{3} / \mathbf{h r} \times \mathbf{~ m ~ x ~ k W) ~}$	Expected Investment Cost (Rs)
1	Beau Bois	825	$40 \times 100 \times 18.5$	150,000
2	Beau Bois	76 B	$15 \times 80 \times 7.5$	55,000
3	St Martin	367 B	$120 \times 50 \times 26$	130,000
4	Bois Mangues	12	$50 \times 60 \times 15$	110,000
5	Haute Rive	391 B	$60 \times 70 \times 18.5$	135,000
6	La Clemence	692	$50 \times 60 \times 15$	110,000
7	Morcellement St Andre	309 A	$45 \times 40 \times 7.5$	60,000
8	Morcellement St Andre	309 B	$46 \times 40 \times 7.5$	60,000
9	Esperance Trebuchet	537 A	$110 \times 35 \times 15$	105,000
10	Fond Du Sac	No1	$72 \times 80 \times 22$	150,000
11	Fond Du Sac (Forbach)	743	$260 \times 70 \times 70$	300,000
12	Poudre D'Or	752	$270 \times 60 \times 65$	300,000
13	Poudre D'Or No1	$123(\mathrm{i})$	$60 \times 40 \times 11$	132,000

Project-Energy Auditing, Management \& Efficiency at CWA - Pumping Stations- Phase II

Ser No	Site	BH No	Recommended Pump Capacity $\mathbf{m}^{3} / \mathbf{h r} \mathbf{x ~ m ~ x ~ k W) ~}$	Expected Investment Cost (Rs)		
14	Poudre D'Or No3	123 (iii)	$120 \times 40 \times 22$	105,000		
15	Poudre D'Or No4	123 (iv)	$180 \times 40 \times 26$	160,000		
16	Petite Retraite	No1	$210 \times 40 \times 32$	150,000		
17	Petite Retraite	No2	$210 \times 40 \times 32$	150,000		
18	Laventure	11 A	$30 \times 80 \times 11$	70,000		
19	Mapou	558	$65 \times 85 \times 22$	105,000		
20	Bonne Mere	492 A	$275 \times 60 \times 66$	300,000		
21	Bonne Mere	492 B	$275 \times 60 \times 66$	300,000		
\quad Total Amount (Rs)						$3,137,000$

M\&E (South)

$\begin{aligned} & \text { Ser } \\ & \text { No } \end{aligned}$	Site	$\begin{aligned} & \text { BH } \\ & \text { No } \end{aligned}$	Recommended Pump Capacity ($\mathrm{m}^{3} / \mathrm{hr} \times \mathrm{m} \times \mathrm{kW}$)	Expected Investment Cost (Rs)
1	Cluny	217A	$300 \times 40 \times 52$	300,000
2		217B	$300 \times 40 \times 52$	300,000
3		217C	$300 \times 40 \times 52$	300,000
4	Gebert	667	$150 \times 60 \times 37$	150,000
5	Barkly	664	$180 \times 80 \times 42$	150,000
6	Ebene	477	$55 \times 70 \times 13$	110,000
7	Holyrood	826	$300 \times 34 \times 45$	210,000
8	Mon Desert Mon Tresor	548A	$30 \times 30 \times 5.5$	55,000
9		548B	$30 \times 30 \times 5.5$	55,000
10	Eau Bonne	247B	$160 \times 90 \times 56$	150,000
11	Solferino Dookhun	359A	$160 \times 40 \times 22$	105,000
12	Telfair	521	$60 \times 100 \times 22$	105,000
13	Telfair	531	$60 \times 100 \times 22$	105,000
			Total Amount (Rs)	2,095,000

The total investment cost for the purchase of submersible pumps is of the order of Rs $\mathbf{5 , 2 3 2 . 0 0 0} \mathbf{0 0}$ This investment cost is of the order of Rs $\mathbf{4 , 1 4 7 , 0 0 0}$ for replacement of oversized submersible pumps and Rs $\mathbf{1 , 0 8 5 , 0 0 0}$ for replacement of inefficient submersible pumps.

4.3 Purchase of Variable Speed Drives

As a trial basis, only one site at Barkly (Herchenroeder) BH 664 is recommended for operation using a variable speed drive. The investment cost required is around Rs $\mathbf{3 5 0 , 0 0 0}$ for the purchase of a 92 kW Variable Speed Drive, Pressure Transducer and surge protectors. Thereafter, additional shall be required for the purchase of Variable Speed Drives for other sites.
4.31 Purchase of VSD for sites operating directly on the distribution mains.

Further to the test that shall be carried out at Barkly (Herchenroeder) BH 664 as described at para 3.8 and the analysis for potential energy savings that can be envisaged, it shall be required to purchase Variable Speed Drives of the following capacities as detailed hereunder;

M\&E (North)				M\&E (South)			
Ser No	Site	VSD Capacity (kW)	Estimated Cost (Rs)	Ser No	Site Capacity (kW)	Estimated Cost (Rs)	
$\mathbf{1}$	Cottage (New)	45	115,000	$\mathbf{1}$	Barkly Herchenroeder BH 664	75	200,000
$\mathbf{2}$	Fond Du Sac (Choisy) BH 643	45	115,000	$\mathbf{2}$	Barkly Swimming Pool BH 501	45	115,000
$\mathbf{3}$	Mapou BH558	30	95,000	$\mathbf{3}$	Choisy Baie Du Cap	11	50,000
$\mathbf{4}$	Camp Ithier BH815	45	115,000	$\mathbf{4}$	Gebert BH 667	45	115,000
$\mathbf{5}$	Cottage Poonith BH 563A	45	115,000	$\mathbf{5}$	Cluny No3 BH 217C	56	170,000
$\mathbf{6}$	La Clemence BH 692	15	60,000	-	-	-	-
$\mathbf{7}$	Poudre D’Or No 2	45	115,000	-	-	-	-
$\mathbf{8}$	Solitude BH 748	30	95,000	-	-	-	-

M\&E (North)				M\&E (South)			
$\begin{array}{\|l} \hline \text { Ser } \\ \text { No } \end{array}$	Site	$\begin{gathered} \text { VSD } \\ \text { Capacity } \\ (\mathrm{kW}) \\ \hline \end{gathered}$	Estimated Cost (Rs)	$\begin{aligned} & \hline \text { Ser } \\ & \text { No } \end{aligned}$	Site	$\begin{gathered} \text { VSD } \\ \text { Capacity } \\ (\mathrm{kW}) \\ \hline \end{gathered}$	Estimated Cost (Rs)
9	Laventure	20	75,000	-	-	-	-
	BH 11A						
10	Mon Loisir	45	115,000	-	-	-	-
	BH720						
11	Schoenfeld	20	75,000	-	-	-	-
	BH337						
12	Caroline BH 44	70	180,000	-	-	-	-
Total Amount (Rs)			1,270,000	Total Amount (Rs)			650,000

The total cost for the purchase of VSD is of the order of Rs $\mathbf{1 , 9 2 0}, 000$.
4.32 Purchase of VSD with associated accessories for sites experiencing severe drop in Dynamic Water Level

Further to the test to be carried out at Holyrood BH 35E, and the analysis of the results, it shall be required to purchase additional Variable Speed Drives and Oversized Submersible Pumps. The exact capacity of these equipments shall be determined based on the results that shall be obtained from the test. It is expected that the investment cost required for these 17 sites shall be around Rs 2 Million.

4.4 Investment Plan

Based on the study in the previous chapters, it is found that the potential energy savings will be Rs $\mathbf{6 , 5 6 6 , 2 6 6 . 8 6}$ Additional savings is possible and it will be quantified by an on site study and test. This investment is required to pursue the next phase of this project and shall involve the following:

- Implementation of recommendations of the previous phases of the project
- Purchase of recommended submersible pumps as given at para4.2 and proceed with installation of same.
- Purchase of one (1) $\mathbf{9 2 k W}$ Variable Speed Drive and accessories and installation for tests at Holyrood BH 35E and Barkly BH 664.
- Calculate savings based on
- reduction of electrical power during the night
- reduction of non revenue water
- Calculate ratings of equipments that shall be required and investment plan for phase II The investment plan that shall be required is given below:

Investment Plan for Upgrading of CWA Sites

Roughness size on the internal surface of pipes.

Pipe Material	Roughness Value
Ductile Iron and Cast Iron	0.3
Galvanized Iron	0.15
Steel and Asbestos cement	0.03
Smooth materials including PE pipes	0.003

s No	Site Name		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	2,04.00		Total 04														
												Nov	Dec															
1	DWS. Port L																											
2	Beau Bois (New)																											
3	Beau Bois																											
4	Beau Sois																											
5	Beau Songes																											
6	Petite Riviere																											
7	Pierrefonds																											
8	St Martin																											
	St Martin ${ }_{\text {DWS- NORTH }}$																											
10	B. Vue Mauricia	62,429.00	60,427.00	65,055.00	60,813.00	62,524.00	59,981.00	63,271.00	62,547.00	60,082.00	62,014.00	60,186.00	61,907.00	741,236.00														
1112																												
	Bassin Loulou (Jamblon)	44,351.00	51,322.00	59,552.00	65,313.00	63,270.00	63,398.00	67,471.00	69,093.00	70,391.00	75,809.00	35,000.00	37,200.00	702,170.00														
13 14	Bassin Loulou (Robinson)	9,090.00	8,738.00	3,080.00										20,908.00														
	Beau Plateau	46.862.00	42,814.00	49,753.00	49,634.00	62,288.00	48,140.00	54,052.00	51,918.00	50,710.00	50,393.00	47,939.00	49,256.00	603,759.00														
1516	Bois Mangues (Old P.de Papayes)	45,389.00	42,701.00	45,499.00	$44,273.00$	46,060.00	44,490.00	45,677.00	45,040.00	43,926.00	45,439.00	43,603.00	45,116.00	5377.213 .00														
	Camp La Boue	14,171.00	12,908.00	13,463.00	11,546.00	12,180.00	13,403.00	13,413.00	14,446.00	14,073.00	14,835.00	15,368.00	12,613.00	162,419.00														
17 17 18	Camp Thorel	169,560.00	138,367.00	133,434.00	129,066.00	131,000.00	133,097.00	133,484.00	132,725.00	129,593.00	132,465.00	131,749.00	131,059.00	1,625,599.00														
	Cottage (New)	15,500.00	14,500.00	15,500.00	15,000.00	15,500.00	15,000.00	15,500.00	15,500.00	15,000.00	45,473.00	42,558.00	44,063.00	269,094.00														
$\begin{array}{\|l\|} \hline 18 \\ \hline 19 \\ \hline \end{array}$	Cottage- Poonith	74,873.00	70,680.00	68,232.00	60,017.00	62,919.00	62,990.00	64,378.00	60,436.00	54,991.00	59,690.00	57,111.00	56,927.00	753,244.00														
$\begin{array}{\|l\|} \hline 19 \\ \hline 20 \\ \hline \end{array}$	Esp.Trebuchet					3,119.00	9,112.00		19,765.00	60,946.00	84,045.00	65.608 .00	57,185.00	299,780.00														
20	F. Du Sac-Choisy	53.021.00	50,692.00	52,720.00	51,300.00	54,311.00	52,220.00	53,770.00	50,546.00	50,994.00	54,874.00	53,048.00	51.664 .00	629,160.00														
21	F. Du Sac-Choisy	54,391.00	51,224.00	50,705.00	49,290.00	52,992.00	54,567.00	58,010.00	54,764.00	51,808.00	48,852.00	47,917.00	411,436.00	615,956.00														
22	F. Du Sac-forbach	122,200.00	127,320.00	136,080.00	143,810.00	124,000.00	109,822.00	115,630.00	115,900.00	108,990.00	113,580.00	109,010.00	112,220.00	1,438,560.00														
23 24	Haute Rive	42,662.00	42,935.00	47,013.00	45,377.00	47,135.00	45,398.00	45,376.00	44,636.00	40,024.00	34,992.00	41,011.00	42,254.00	518,813.00														
$\begin{array}{r}24 \\ 25 \\ \hline\end{array}$	La Clemence																											
23 20 20	Labourdonnais	23,543.00	24,472.00	24,733.00	27,940.00	29,065.00	28,100.00	28,669.00	29,013.00	27,655.00	28,102.00	26,273.00	25,380.00	322,945.00														
2 2 2 2	Mapou	21,996.00	20,010.00	22,277.00	22,093.00	23,320.00	22,258.00	23,492.00	24,510.00	23,420.00	26,745.00	27,960.00	28,206.00	286,287,00														
	Mon Loisir	39,199.00	35,779.00	42,180.00	43,674.00	50,519.00	44,081.00	48,614.00	46,122.00	45,071.00	46,338.00	44,347.00	44,845.00	530,769.00														
28 29	MSA BH 117	53,980.00	50,600.00	51,570.00	54,120.00	45,840.00	49,160.00	52,160.00	56,020.00	52,250.00	52,790.00	52,160.00	54,110.00	624,760.00														
	MSA BH 306	21,530.00	73,720.00	85,900.00	80,480.00	88,030.00	87,140.00	88,680.00	87,520.00	83,570.00	84,840.00	80,400.00	78,720.00	940,530.00														
31 32 3	MSA BH 309	70,850.00	22,380.00	31,150.00	-	-	-	.	-	-	-	49,200.00	49,230.00	222,810.00														
32 33 34	M P Bon Espogir	141.626 .00	139,684.00	151,304.00	142.018 .00	151.642 .00	147.442 .00	156.304 .00	159,983.00	150,837.00	150.879.00	133.019.00	136,697.00	$\underline{1,761,435.00}$														
34 35	P. D'Or (${ }^{\text {New) }}$	133,300.00	124,700.00	133,000.00	129,000.00	133,000.00	129,000.00	133,300.00	133,300.00	129,000.00	133,300.00	129,000.00	133,300.00	1,573,200.00														
35 36 3	P. D'or No. 1	37,531.00	37,588.00	39,261.00	38,198.00	12,107.00	635.00		39,146.00	34,278.00	38,883.00	33,149.00	35,908.00	346,684.00														
36 3	P. D'or No. 2	9,300.00	8,700.00	9,300.00	9,000.00	9,300.00	9,000.00	9,300.00	13,942.00	10,808.00	13,443.00	14,298.00	12,356.00	128,747.00														
37 38 8	P. D'Or No. 3	102,474.00	96,344.00	104,287.00	104,922.00	25,166.00	$73,478.00$	102,434.00	117,430.00	113,699.00	111,029.00	104,213.00	101,305.00	1,156,781.00														
-39	P. D'Or No. 4	102,936.00	96,258.00	105.832.00	109,920.00	124,762.00	133,548.00	140,321.00	132,155.00	117,725.00	117,447.00	97,560.00	109,914.00	1,388,378.00														
40 41 1	Peite Retraite	176,241.00	168,827.00	178,921.00	173,485.00	205,016.00	202,693.00	206,061.00	204,103.00	194,790.00	202,824.00	196,772.00	194,707.00	2,304,440.00														
4	Riche Terre	32,651.00	30,992.00	30,035.00	32,902.00	33,658.00	32,116.00	34,488.00	34,159.00	31,951.00	34,074.00	29,672.00	31,861.00	388,559.00														
	Schoenfeld	59,823.00	90,524.00	96,332.00	91,322.00	97,639.00	95,605.00	107,518.00	94,930.00	91,606.00	92,642.00	89,545.00	91,892.00	1,099,378.00														
	Schoenteld	3625100	2816500			29020						26.6150	4320800	13714100														
	DWS-EAST													,														
4647	B.Rose Clemencia no1	223,386.00	200,872.00	286,851.00	216,720.00	221,464.00	210,120.00	216,814.00	218,178.00	213,090.00	222,611.00	222,630.00	234,360.00	2,687,096.00														
	B.Rose Clemencia no2	110,887.00	119,084.00	192,487.00	117,540.00	131,037.00	80,790.00	125,426.00	126,294.00	126,000.00	127,689.00	107,760.00	144,266.00	1,479,260.00														
47 48	B.Rose Clemencia no 3	112,499.00	81,788.00	94,364.00	99,180.00	90,427.00	129,330.00	91,388.00	91,884.00	87,090.00	94,922.00	114,870.00	120,094.00	$\frac{1,207,836.00}{31,45800}$														
	49 Bel Etang				196,200.00		205,800.00	212,660.00	211,420.00	197,250.00	200,384.00		31,458.00															
$\begin{array}{r}49 \\ \hline 50 \\ \hline\end{array}$	Bonne Mere	192,200.00	174,160.00	203,360.00		205,220.00						197,070.00	210,800.00	2,406,524.00														
5 5 5 5	Camp thier		39,200.00	39,680.00	39,000.00	40,300.00	39,000.00	40,300.00	40,920.00	42,000.00	43,648.00	44,880.00	45,260.00															
	Caroline	43,400.0028,960.00			283,410.00	290,439.00	28,380.00	303,490.00	300,886.00	274,980.00	300,576.00	287,280.00	292,888.00	$\begin{array}{r}\text { 497,588.00 } \\ \text { 3,46,649.00 } \\ \hline\end{array}$														
54			$\begin{array}{r} 266,000.00 \\ \hline 266,616.00 \end{array}$	296,360.00																								
55	Onstance BH No1	291,400.00		$\begin{array}{r}\text { 293,880.00 } \\ \hline 9.145 .00\end{array}$	282,000.00	293,880.00	288,600.00	294,283.00	294,159.00	290,400.00	298,623.00	288,200.00	299,181.00	3,479,222.00														
56 57	Constance BH No2	6,355.00	7,700.00		9,630.00	9,641.00	9.570 .00	9,858.00	10,075.00	12,000.00	${ }^{12,710.00}$	12,780.00	12,958.00	122.422 .00														
58 Petit Paquet ${ }^{\text {DRY SEASON PUMPING STATIONS (}}$ ()												52,530.00	65,906.00	118,436.00														
59 / Merose BH																												
60	Choisy Baie du Cap New	2,108.00	2,268.00	1,891.00	2,370.00	2,449.00	2,400.00	2.418.00	2,370.00	2,449.00	2,430.00	2,480.00	2.511.00	28,144.00														
61	Bananes	99,572.00								64,790.00		87,330.00	92,132.00															
62	Cafe	39,401.00730,484.00	34,804.00	42,098.00	38,370.00	37,572.00	39,390.00	40,455.00	40,269.00	40,300.00	37,980.00	36,510.00	38,967.00	466,116.00														
63 64	Cluny		651,028.00	644,304.00	663,900.00	691,021.00	657,750.00	670,034.00	676,575.00	717,929.00	693,120.00	694,320.00	734,979.00	8,225,444.00														
65	Cluny																											
66	Gebert	81,592.00	123,228.00	88,040.00	157,500.00	164,734.00	156,000.00	154,442.00	136,338.00	131,750.00	133,350.00	125,730.00	138,601.00	1,591,305.00														
$\frac{67}{68}$	M.D.M.T. Plaisance	21,421.00	19,992.00	18,662.00	20,730.00	23,033.00	21,090.00	21,917.00	23,250.00	23,498.00	21,150.00	22,110.00	21,638.00	258,491.001,831,103.00														
6	$\xrightarrow{\text { N. France (new) }}$ N. Francee (old)	147,467.00	140,476.00	132,773.00	174,030.00	179,893.00	167,010.00	165,757.00	157,139.00	152,427.00	148,080.00	129,930.00	136,121.00															
72 Trois Boutiques DWSS-MAV UPPR																												
73	Alma	9,920.00	12,908.00	4,247.00	1,830.00	8,649.00	10,680.00	17,732.00	16,399.00	16,050.00	15,870.00	13,020.00	14,725.00	142,030.00														
74	Beard	205,964.00	189,627.00	201,748.00	201,090.00	207,514.00	202,200.00			200,880.00	203,484.00	198,960.00	201,810.00															
75	Beard (new)	205,964.00	189,627.00	201,748.00	201,090.00	207,514.00	202,200.00	208,444.00	205,344.00	200,880.00	203,484.00	198,966.00	201,810.00	2,427,065.00														
76 77 7	Bonne Veine BH no1	40,734.00	34,440.00	38,316.00	36,930.00	38,254.00	46,500.00	52,297.00	46,980.00	42,408.00	40,982.00	39,308.00	47,120.00	504,269.00														
78	Montee du Fil	147,095.00	132.496 .00	146,661.00	137,280.00	146,630.00	140.490.00	154,101.00	124,620.00	117.810.00	126,666.00	123,330.00	126,294.00	1,623.473.00														
79	Montee du Fil																											

ows-	MAV Lower													
80	Bambou (Eau Bonne) BH No1	110,200.00	101,788.00	110,816.00	104,312.00	101,998.00	97,289.00	80,483.00	117,367.00	93,329.00	95,456.00	88,522.00	84,023.00	1,185,583.00
82	Baakly (BH)	161,932.00	148,448.00	180,772.00	182,964.00	189,076.00	175,117.00	142,608.00	200,805.00	167,326.00	164,918.00	152,218.00	151,821.00	2,024,005.00
83	Barkly (SP)		148,448.00	180,772.00	182,964.00	189,076.00	175,17.00	142,008.00	20,805.00	167,326.00	164,98.00	152,418.00	151,821.00	2,024,005.00
84 85 8	${ }^{\text {Bassin }}$ BH No 1	256,652.00	184,800.00	204,600.00	198,000.00	204,600.00	198,000.00	204,600.00	204,600.00	198,000.00	204,600.00	198,000.00	204,600.00	2,461,052.00
86	Bassin 717	70,198.00	64,349.00	81,393.00	84,466.00	73,796.00	62,303.00	50,892.00	59,052.00	41,633.00	99,851.00	100,574.00	91,711.00	880,223.00
87	${ }_{\text {Bassin } 435}$	70, 893900	64,349.098	\%,39..	836800	83,96000	8, 88300	6.85700	9.90400	779900	788200	8748.00	8.50600	99.980 .00
89		64,257,00	7103700	95,469,00	10077500	3939700	28,14300	${ }^{31,321.00}$						
90	Claifonds BH No. 2	64,257.00	71,037.00	95,469.00	100,775.00	39,397.00	28,143.00	31,321.00	99,106.00	87,315.00	98,365.00	86,368.00	75,685.00	877,238.00
91	Ebene BH No1	43,370.00	39,626.00	4,836.00	48,138.00	46,205.00	43,922.00	33,298.00	51,345.00	42,631.00	43,673.00	38,957.00	36,684.00	502,685.00
93	Highlands	26,350.00	20,748.00	25,110.00	26,970.00	30,039.00	31,440.00	24,738.00	34,193.00	29,910.00	34,689.00	30,720.00	35,464.00	350,371.00
95	Holyrood													
96	Holyrood													
99	Holyrood	387,256.00	352,935.00	478,420.00	500,255.00	494,846.00	498,026.00	390,774.00	560,685.00	457,453.00	491,033.00	395,432.00	321,955.00	5,335,070.00
100	Holyrood													
101														
103	Palma	52,380.00	49,036.00	54,335.00	31,852.00			53,543.00	53,000.00	52,344.00	53,977.00	51,819.00	55,790.00	508,076.00
104	Palmyre 26B	37,641.00	33,075.00	50,790.00	79,500.00	46,895.00	51,999.00	44,097.00	53,651.00	49,315.00	51,149.00	45,358.00	37,353.00	580,823.00
105	Palmyre 419	36,172.00	32,792.00	38,989.00	38,164.00	37,982.00	35,984.00	30,039.00	44,145.00	35,385.00	36,623.00	35,122.00	33,387.00	434,784.00
106	Palmyre (new) 827	23,291.00	21,228.00	28,566.00	30,222.00	29,543.00	27,519.00	22,769.00	31,975.00	25,185.00	26,173.00	24,792.00	23,011.00	314,274.00
107 108		36,699.00	,787.00	,286.00	41,676.00	9,503.00	40,567.00	30,638.00	41,110.00	37,607.00	38,215.00	36,221.00	33,632.00	450,941.00
109	Solferino BH	32,479.00	31,884.00	40,638.00	62,634.00	35,008.00	34,499.00	28,360.00	42,535.00	18,136.00	34,247.00	33,346.00	32,073.00	425,839.00
110	Solferino Candos	119,746.00	104,393.00	120,974.00	114,366.00	146,812.00	158,132.00	118,399.00	165,106.00	129,477.00	133,942.00	127,396.00	121,445.00	1,560,188.00
111	Solierino Candos													
1112	Solferino Dookun	92,435.00	77,812.00	58,175.00	45,114.00	51,150.00	86,643.00	71,417.00	109,083.00	88,755.00	115,145.00	61,785.00	68,438.00	925,952.00
1114	Solierino Dookun	39,961.00	34,831.00	41,637.00	41,068.00	40,789.00	39,019.00	32,045.00	47,011.00	37,627.00	37,409.00	30,136.00	17,608.00	439,141.00
115	St Jean													
$\frac{116}{117}$	${ }_{\text {St Paul BH No1 }}$	62,557.00	38,071.00	46,435.00	64,873.00	84,681.00	101,104.00	74,375.00	53,712.00	65,390.00	85,361.00	80,894.00	68,488.00	825,941.00
118	Telfair												59,675.00	
119	Telfair	60,853.00	78,064.00	85,34.00	82,140.00	83,886.00	74,834.00	73,346.00	64,914.00	60,030.00	59,489.00	58,290.00	59,675.00	840,895.00
120 121	Trianon Trianon (New) $^{\text {a }}$	176,364.00	195,732.00	210,222.00	214,774.00	234,681.00	212,515.00	168,888.00	240,932.00	188,561.00	202,750.00	205,353.00	169,527.00	2,420,279.00
-122	Valentina (Lower Phoenix)	83,247.00	81,723.00	110,902.00	103,374.00	102,340.00	83,732.00	70,816.00	102,926.00	84,843.00	87,346.00	79,818.00	75,326.00	1,066,393.00
124	Valentina (new)	21,596.00	18,681.00	22,793.00	31,696.00	36,165.00	33,340.00	22,695.00	32,265.00	30,051.00	28,876.00	24,111.00	19,635.00	321,904.00
${ }_{1}^{125}$	Yemen	103,304.00	97,932.00	30,345.00	111,588.00	115,943.00	109,814.00	77,264.00	150,533.00	109,940.00	113,188.00	111,068.00	109,206.00	1,240,065.00
127	Yemen New	35,031.00	55,300.00	63,430.00	78,129.00	66,900.00	70,410.00	57,690.00	88,950.00	69,920.00	85,500.00	81,580.00	77,630.00	830,470.00
		7,320,503.00	6,753,446.00	7,408,934.00	7,442,467.00	7,447,622.00	7,281,241.00	7,160,180.00	7,856,322.00	7,356,703.00	7,749,635.00	7,398,145.00	7,461,152.00	88,636,350.00

ws-m	MAV LOWER													
${ }_{81}^{81}$	Bambou (Eau Bonne) BH No1	110,200.00	101,788.00	110,816.00	104,312.00	101,998.00	97,289.00	80,483.00	117,367.00	93,329.00	95,456.00	88,522.00	84,023.00	1,185,583.00
82	Barkly (BH)	161.932.00	148.448.00	180,772.00	182.964.00	189,076.00	175.117.00	142.608.00	206.805.00	167.326.00	165,638.00	152.527.00	151.821.00	2,025,034.00
83	Barkl (SP)													
84 85 88	${ }^{\text {Bassin }{ }^{\text {BH No }} 1}$	256,652.00	184,800.00	204,600.00	198,00.00	204,600.00	204,600.00	204,600.00	198,000.00	204,600.00	198,000.00	204,600.00	198,000.00	2,461,052.00
86	Bassin 717	70,198.00	64,349.00	81,393.00	84,466.00	73,796.00	62,303.00	50,892.00	59,052.00	41,638.00	99,851.00	100,574.00	91,711.00	880,223.00
87 88	Chamarel BH	8.539.00	7,698.00	8,835.00	8,368.00	8,361.00	8,483.00	6,857.00	9,904.00	7,799.00	7,882.00	8,748.00	8.506.00	99,980.00
89	Clairfonds BH No. 1	64,257.00	71,037.00	95,469.00	100,775.00	39,397.00	28,143.00	31,321.00	99,106.00	87,315.00	98,365.00	86,368.00	75,685.00	877,238.00
90	Clairifonds 8 H No. 2													
91	Ebene BH No1	43,370.00	39,626.00	34,836.00	48,138.00	46,205.00	43,922.00	33,298.00	51,345.00	42,631.00	43,673.00	38,957.00	36,684.00	502,685.00
93	Highlands	26,350.00	19,264.00	26,009.00	37,590.00	41,602.00	44,880.00	32,271.00	34,720.00	34,320.00	40,982.00	39,930.00	37,324.00	415,242.00
95	Holyrood													
96	Holyrod													
98	Holyrod													
99	Holyrood	387,256.00	352,935.00	478,420.00	506,255.00	494,846.00	498,026.00	390,774.00	560,685.00	457,45.00	491,033.00	395,432.00	321,955.00	5,335,070.00
100	Holyrod													
101	Holyrood													
${ }_{102} 10$	Polym	53,280,00	49,036.00	54,335.00	31,852.00			53.543.00	53.000.00	52,344.00	53,977.00	51,819.00	55,790.00	508,976.00
104	Palmyre 26B	37,641.00	33,075.00	50,790.00	79,500.00	46,895.00	51,999.00	44,097.00	63,561.00	49,315.00	51,149.00	45,358.00	37,353.00	590,733.00
105	Palmyre 419	$36,172.00$	32,792.00	38,989.00	38,164.00	37,982.00	35,984.00	30,039.00	44,145.00	35,385.00	36,623.00	35,122.00	33,387.00	434,784.00
106	Palmyre (new) 827	23,291.00	21,228.00	28,566.00	30,222.00	29,543.00	27,519.00	22,769.00	31,975.00	25,185.00	26,173.00	24,792.00	23,011.00	314,274.00
107	Pont Fer (peitic camp) BH No1	36,699.00	34,787.00	40,286.00	41,676.00	39,503.00	40,567.00	30,638.00	41,10.00	37,607.00	38,215.00	36,221.00	33,632.00	450,941.00
$\frac{108}{108}$	Pont Fer (petit amp) BH No2	3247900	3188400	40,63800	3263400	3500800	3449900	28.36000	42,535.00	1813600	3424700	33,34600	32073.00	39583900
110	Solferino Candos													
111	Solferino Candos	119,746.00	104,393.00	120,974.00	114,366.00	146,812.00	158,132.00	118,399.00	165,106.00	129,477.00	133,942.00	127,396.00	121,445.00	1,560,188.00
112	Solferino Dookun	92,435.00	77,812.00	58,175.00	45,114.00	51,150.00	86,643.00	71,417.00	109,083.00	88,75..00	115,145.00	61,785.00	68,43.00	925,952.00
114	St Jean	39,961.00	34,831.00	41,637.00	41,068.00	40,789.00	39,019.00	32,045.00	47,011.00	38,267.00	37,409.00	30,136.00	17,608.00	439,781.00
115	St Jean													
116	St Paul BH No1	62,557.00	38,071.00	46,435.00	64,873.00	84,381.00	101,104.00	74,375.00	53,712.00	65,390.00	85,361.00	80,894.00	68,488.00	825,641.00
$\frac{117}{118}$	${ }_{\text {St Paul }}^{\text {TH No2 }}$													
${ }^{119}$	Telfair	60,853.00	64,596.00	82,987.00	80,970.00	82,925.00	74,160.00	77,593.00	62,837.00	60,150.00	53,971.00	51,600.00	49,011.00	1,653.0
120 121 1	Trianon ${ }_{\text {Trianon (New) }}$	176,364.00	195,732.00	210,222.00	214,774.00	234,681.00	212,515.00	168,868.00	240,932.00	188,561.00	202,750.00	205,353.00	169,527.00	2,420,279.00
122	Valentina (Lower Phoenix)	83,247.00	81723.00	110,902.00	103,374.00	102,340.00	83,732.00	70.816.00	102,926.00	84,843.00	87346.00	79,818.00	75,326.00	, 393.00
$\frac{123}{124}$	Valentina (Lower Phoenix)													
124	Valentina ((eew)	21,596.00	18,681.00	22,793.00	31,696.00	16,165.00	33,340.00	22,695.00	32,265.00	30,051.00	28,876.00	24,111.00	19,635.00	301,904.00
125 126	Yemen Yemen(OL)	103,304.00	97,932.00	30,345.00	11,528.00	115,943.00	109,814.00	77,264.00	150,533.00	109,940.00	113,188.00	111,068.00	109,206.00	1,140,065.00
127	Yemen New	65,031.00	55,300.00	63,430.00	78,129.00	66,900.00	70,410.00	57,690.00	88,950.00	69,920.00	85,500.00	81,580.00	77,630.00	860,470.00
		8,345,688.00	7,195,449.00	8,041,936.00	8,655,660.00	7,975,582.00	8,031,657.00	8,063,233.00	8,894,823.00	216,486.00	541,989.00	306,905.00	208,378.00	98,47,786.00

MAV LO	WER													
$\begin{array}{r}80 \\ 81 \\ \hline\end{array}$	Bambuu (Eau Bonne) BH No1	25,749.00	179,409.60	158,914.80	170,649.00	165,223.80	169,453.80	163,861.20	170,766.00	178,894.89	171,678.15	178,416.00	167,888.70	1,900,904.94
82	Barkl (BH)													
83	Barkly (SP)	180,468.00	157,248.00	157,880.00	156,816.00	72,252.00	95,580.00	113,400.00	108,000.00	137,460.18	104,101.20	114,880.40	135,853.20	1,532,938.98
84 85	${ }^{\text {Bassin }}$ BH No 1	150,660.00	181,980.00	154,116.00	161,244.00	187,164.00	152,604.00	164,884.00	152,712.00	179,569.64	178,038.00	136,880.00	33,226.20	1,881,877.84
86	Bassin 717	127,881.00	94,032.00	91,560.60	97,507.80	94,003.20	96,303.60	93,009.60	96,622.20	101,378.61	98,924,49	134,611.47	174,248.55	1,300,083.12
88	Chamarel BH													
89	Clairfonds BH No. 1	38,052.00	39,600.00	40,356.00	54,792.00	67,032.00	42,732.00	45,072.00	44,352.00	41,713.70	43,810.20	39,387.60	42,865.20	539,764.70
90	Clairfonds BH No. 2	38,022.00	39,60.00	40,356.00	54,792.00	67,032.00	42,732.00	45,072.00	44,32.00	41,73.70	43,810.20	39,387.60	42,865.20	539,764.70
${ }_{91}^{91}$	Ebene BH No1	18,072.00	19,80.00	15,048.00	15,300.00	12,096.00	15,840.00	18,936.00	15,156.00	18,295.82	13,003.20	13,305.60	17,879.40	192,732.02
93	Highlands	26,082.00	21,870.00	19,62.00	22,788.00	19,980.00	22,788.00	11,488.00	16,54.00	20,014.31	19,164.60	20,752.20	19,051.20	240,064.3
95	Holyrood													
96	Holyrood													
${ }_{98}^{97}$	Holyrood													
99	Holyrood	190,080.00	204,660.00	204,880.00	238,320.00	235,440.00	213,120.00	250,740.00	196,560.00	264,747.09	191,079.00	205,065.00	189,378.00	2,583,699.09
100	Holyrood													
101 102	Holyrood													
103	Palma	24,577.20	25,297.20	23,122.80	14,504.40	7.916 .40	7.407 .00	10,935.00	10,668.60	24,305.81	25,123.77	25,953.48	25,480.98	225,292.64
104	Palmyre 26B	29,750.70	3, $35,929.00$	16,030.10	30,507.10	39,261.50	34,189.90	4, 4,853.90	24,226.50	35,272.00	36,225.12	15,683.86	23,957.74	365,887.42
105	Palmyre 419													
106	Palmyre (new) 827	48,732.00	57,22.00	47,182.00	55,862.00	62,248.00	$53,630.00$	59,458.00	53,506.00	62,068.84	56,332.80	49,226.00	46,422.40	651,894.04
107	Pont Fer ((eetit camp) BH No1	28,548.00	30,384.00	27,864.00	29,412.00	37,692.00	24,804.00	31,428.00	25,884.00	27,962.95	21,470.40	22,604.40	20,790.00	328,843.75
108	Pont fer ((perit camp) BH No2	28,416.60	28,625.40	27,081.00	27,896.40	27,880.20	25,182.00	35,404.20	35,875.80	25,260.68	20,608.56	21,254,94	20,574.54	324,060.32
110 111	Solferino Candos	18,414.00	18,414.00	13,608.00	15,282.00	21,870.00	10,260.00	14,472.00	12,042.00	19,438.30	20,752.20	21,942.90	19,788.30	206,283.70
$\begin{array}{r}111 \\ 112 \\ \\ \hline\end{array}$	Solferino Candos Solferino Dookun													
113	Solferino Dookun	61,344.00	62,640.00	53,928.00	62,280.00	59,976.00	54,360.00	64,944.00	50,688.00	70,846.77	63,957.60	66,074.40	60,555.60	731,594.37
114	St Jean	18,856.80	18,738.00	12,888.00	13,091.40	14,360.40	18,311.40	17,931.60	18,388.40	19,533.34	19,026.63	19,610.64	18,935.91	209,622.52
115	St jean													
117	${ }^{\text {St Paul }}$ BH ${ }^{\text {B }}$ No2	28,080.00	23,472.00	21,888.00	32,616.00	27,720.00	22,752.00	24,768.00	25,066.00	24,975.56	30,240.00	27,442.80	35,305.20	324,315.56
118	Telfair													
119	Telfair													
120	Trianon	75,276.00	89,424.00	75,816.00	81,433.00	89,640.00	76,140.00	83,052.00	72,036.00	109,78.62	68,720.40	86,694.30	91,854.00	999,873.32
$\begin{array}{r}121 \\ 122 \\ \\ \hline\end{array}$	Vranon (New)													592,806.76
123	Valentina (Lower Phoenix)	48,195.00	48,580.20	46,031.40	50,657.40	44,407.80	47,910.60	47,118.60	50,151.60	54,006.82	51,542.19	53,373.60	50,831.55	
124	Valentina ((ew)	28,476.00	34,344.00	26,964.00	35,532.00	30,060.00	33,948.00	23,436.00	29,232.00	36,744.80	32,772.60	34,927.20	31,67.40	378,117.00
125	Yemen	74,736.00	90,612.00	75,060.00	81,324.00	89,964.00	76,302.00	89,856.00	70,092.00	93,459.86	91,910.70	80,343.90	70,308.00	983,968.46
127	Yemen New	108,990.00	119,385.00	83,853.00	102,879.00	106,470.00	84,042.00	104,202.00	88,263.00	132.595.74	12,876.00	119,277.00	$109,509.60$	1,288,342.34
		773,087.90	.741,964.60	252,650.90	515,033.30	392,362.10	140,577.50	449,375,10	148,016.70	891,885.42	029,276.40	041,500.09	55,241.03	5, 313,264.08

-mavLO	WER					ve Elee	Cost							
$\begin{array}{r}80 \\ 81 \\ \hline\end{array}$	Bambou (Eau Bonne) ${ }^{\text {BH No1 }}$ (${ }^{\text {Bambou (Eau Bonne) }}$ BH No2	171,636.57	171,710.28	159,272.19	179,166.33	173,906.46	179,916.66	173,615.40	179,829.72	179,015.13	171,889.83	175,036.68	169,442.28	2,084,437.53
82	Barkly (BH)	133,358.40	132,791.40	127,688.40	149,121.00	133,471.80	130,750.20	143,790.96	127,575.00	149,688.00	130,523.40	131,544.00	157,285.80	,1,677,588.36
$\stackrel{83}{84}$	${ }^{\text {Barkl (}}$ (SP)													
85	Bassin BH No2	66,006.00	123,039.00	117,482.40	134,492.40	121,111.20	114,647.40	128,482.20	113,173.20	119,750.40	125,193.60	141,863.40	168,512.40	1,474,653.60
${ }_{86}^{86}$	${ }_{\text {Bassin } 717}^{\text {Bassin } 435}$	138,136.32	180,857.88	180,857.88		323,350.65	196,535.43	224,125.65	273,069.09	248,737.23	242,742.15	171,143.28	271,698.84	2,451,254.40
88	Chamarel BH													
89	Clairfords BH No. 1	37,081.63	35,418.60	36,136.80	47,817.00	53,033.40	62,407.80	59,232.60	52,239.60	47,703.60	52,088.40	62,131.43	49,555.80	594,846.66
91	Ebene BH No1 1	18,937.80	18,333.00	18,257.40	21,054.60	17,652.60	18,370.80	21,659.40	15,422.40	22,046.53	18,514.44	18,801.72	18,523.89	227,574.58
${ }_{93}^{92}$														
94	Highlands	18,314.10	18,427.50	20,015.10	22,113.00	18,314.10	20,185.20	21,716.10	21,035.70	20,86.60	21,602.70	20,355.30	23,927.40	246,871.80
${ }_{95}^{96}$	Holyrood													
97	Holyrood													
98 99	Holyrood	230,202.00	247,023.00	257,985.00	265,167.00	233,604.00	268,191.00	271,971.00	254,583.00	292,761.00	264,033.00	269,892.00	247,212.00	3,102,624.00
100	Holyrood													
101	Holyrood													
102 103	Holyrood	25,375.14	26.571.51	23,940.63	26.112 .24	25.507 44	26,403.30	25,668.09	26.686 .80	26,671.68	25.823.07	26.677 .35	25,728.57	311.165 .82
104	Palmyre 26B	23,423.10	27,423.12	23,119.92	29,124.84	25,307,38	27,899.08	31,873.02	29,372.60	31,426.40	31,951.26	30,849,38		311,770.10
105	Palmyre 419													
106	Palmyre (new) 827	49,033.40	54,702.80	47,335.20	54,376.80	47,791.60	49,356.40	57,962.80	52,942.40	55,094.00	57,376.00	48,900.00		574,868.40
107	Pont Fer ((etit camp) BH No1	19,580.40	20,412.00	23,549.40	22,528.80	20,071.80	20,676.60	22,566.60	22,642.20	19,618.20	23,133.60	20,941.20	22,264.22	257,985.00
108 109	Pont Fer (petit camp) BH No2	21,275.73	21,364.56	20,427.12	26,267.22	20,385.54	21,610.26	20,967.66	21,627.27	21,597.03	20,956.32	21,366.45	20,886.39	258,731.55
110	Solferino Candos				17,690.40	17,520.30	19,731.60	19,788.30	18,994.50	22,283.10	20,638.80	21,035.70	20,752.20	239,330.70
111 112	Solferino Candos	19,164.60	20,128.30	21,02.70		17,20.30		19,88.30	18,94.5	22,28.10	20,68.8	21,035.7	20,752.20	239,330.70
113	Solferino Dookun	57,456.00	61,538.40	65,091.60	65,923.20	51,030.00	58,287.60	60,858.00	54,583.20	67,662.00	61,765.20	63,882.00	64,108.80	732,186.00
114	St Jean	17,905.86	19,022.85	17,369.10	18,943.47	17,835.93	19,327.14	18,848.97	19,614.42	19,599.30	18,733.68	19,540.7	$22,084.6$	228,826.08
115	St Jean													
1116	${ }^{\text {St Paul BH No1 }}$	25,099.03	23,662.80	21,848.40	26,384.40	31,752.00	35,532.00	54,658.80	43,167.60	23,587.20	33,188.40	33,490.80	25,401.60	377,773.03
118	Telfair	48,70530	55,16910	51,14340	57,04020	63,27720	$60,272.10$	65.998 .80	$56,586,60$	61,803.00	55,84950	65,54520	68.266 .80	709,657.20
119	Telfair													
120 121	Trianon	72,954.00	81,270.00	157,777.20	158,382.00	111,358.80	147,117.60	156,629.97	151,681.95	147,310.38	137,212.11	143,887.25	135,728.46	01,109.72
$\begin{array}{r}122 \\ 123 \\ \hline\end{array}$	Valentina (Lower Phoenix)	53,150.58	53,339.58	48,542.76	50,328.81	48,835.71	54,588.87	47,308.59	54,108.81	52,515.54	49,865.76	54,171.18	52,235.82	618,992.01
124	Valentina (new)	30,655.80	31,676.40	32,356.80	34,549,20	31,185.00	33,037.20	39,690.00	31,033.80	35,456,40	36,174.60	33,868.80	39,690.00	409,374.00
125 126	Yemen	86,977.80	84,709.80	81,931.50	97,694.10	81,874.80	84,879.90	96,390.00	87,998.40	93,895.20	88,055.10	82,328.40	98,147.7	1,064,882.70
127	Yemen New	125,647.60	111,216.00	112,209,00	136,239.60	114,857.00	110.421 .60	133,922.60	121,874,20	129,222.40	114,724.60	109,892.00	105,853.80	1,426,080.40

S No	Site Name									2,004				Total 04
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
DWS-Port Louis														
1	Beau Bois BH	8.550	8,550	8.550	8.550	${ }^{8,550}$	8.550	8,550	8,550	8.550	8.550	8.550	8,884	102,334
,	Beau Bois (New)													
3	Beau Bois													
	Beau Songes	15,216	15,216	15,216	14,675	14,675	14,675	14,675	14,675	11,045	14,816	14,816	14,816	174,515
5	Beau Songes													
6	Petite Riviere	5,244	5,244	5,244	5,187	5,187	5,187	5,073	4,902	4,902	4,902	4.845	4,845	60,762
7	Pierrefonds	10,221	10,221	10,221	9,985	9,985	9,985	9,959	9,913	4,549	5,514	10,612	10,612	111,776
8	St Martin	5,130	5,130	5,130	5,130	5,130	5,130	5,130	5,757	5,757	5,757	5,757	12,825	71,763
DWS- NoRTH														
		4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	48,792
11	Bassin Loulou (Gallery)													
12	Bassin Ioulou (Jamblon)	3,724	3.724	3,724	3,724	3,610	3,610	3,496	3,496	3,496	3,477	${ }_{3,477}$	3,230	42,788
13	Bassin Loulou (Robinson)	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	
14	Beau Plateau	4,560	3,230	3,230	3,230	3,230	3,230	${ }_{3,230}$	3,230	3,230	3,230	${ }_{3,230}$	${ }_{3,230}$	40,090
15	Bois Mangues (Old P.de Papayes)	3,306	3,306	3,306	3,306	3,306	3,306	3,306	2,964	3,002	3,002	3,002	3,002	
16	Camp La Boue	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	${ }^{22,800}$
17	Camp Thorel	10,561	10,561	10,561	10,561	10,561	10,545	10,545	10,545	10,545	10,545	16,052	16,054	137,637
18	Cottage (New)	2,964	2,964	2,964	2,926	2,926	2,964	2,964	2,964	2,964	2,964	2,964	2,964	35,492
19	Cottage-Poonith	5,662	5,738	5,738	5,738	5,738	5,738	5,738	5,738	5,624	5,510	5,624	5,624	68,210
20	Esp.Trebuchet													
21	F. Du Sac-Choisy	9,073	9,101	9,130	9,538	9,538	9,538	9,538	9,538	9,538	9,538	9,215	9,215	112,499
$\stackrel{22}{23}$	F. Du sac-Choisy	8.949	8.949	8.835	8.892	9.120	9.120	9.120	9,120	9.120	9.120	9.120	9.120	108.585
24	Haute Rive	3,040	3,040	3,002	3,002	3,002	3,040	3,040	3,040	3,040	3,040	3,040	3,040	36,366
25	La Clemence	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
26	Labourdonnais	1,957	1,957	1,957	1,957	1,957	1,938	1,938	1,900	1,900	1,900	1,900	1,900	23,161
27	Mapou	2,214	2,214	2,214	2,214	2,214	2,214	2,214	2,206	2.549	2,576	2,659	2,660	28,151
28	Mon Loisir	5,155	5,155	5,155	5,155	4,710	4,711	4,711	4,748	4,748	4,748	4,748	4,748	58,492
29 30	MSA BH 117	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	2,318	2,318	2,318	2,318	24,472
31	MSA BH 306	7,714	7,714	7,572	7,572	7,524	7,192	7,192	7,192	7,192	7,192	7,192	7,192	88,436
32	MSA BH 309	1,900	1.900	1,900	1,900	1,900	1.900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
$\begin{array}{r}33 \\ \hline\end{array}$	MSA BH 309													
${ }_{3}^{34}$		10,260	10,260	${ }_{14,0,860}$	10,203	10,203	10,203	10,203	10,203	10,260	10,260 1020	${ }^{10,260}$	${ }^{10,2620}$	180,678 122,835
36	P. D'or No. 1	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	
37	P. D'or No. 2	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
38	P. D'or ${ }^{\text {No. } 3}$	3,382	3,335	3,335	3,297	3,297	3,297	3,297	3,297	3,297	3,297	3,297	3,297	39,720
39	P. D'or No. 4	3,648	3,639	3,639	3,620	3,620	3,610	3,610	3,620	3,620	3,620	3,620	3,620	43,482
40	Petite Retraite	5,700	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,700	6, 540
42	Riche Terre	1,900	1,900	1,900	1,900	1,900	1,900	2,014	2,014	2.014	2.014	2.014	2,014	23,484
43	Schoenfeld													
44	Schoenfeld	4,440	4,440	4,40	4,40	4,864	4,826	4,636	4,80	4,256	4,256	4,256	4,256	55,290
DWS-EAST		3,762	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,762	47,424
46	B.Rose Clemencia no1													
47	B.Rose Clemencia no2		19,347	19,490	19,490	19,490	19,490	19,490	19,490	19,490	18,968	19,379	19,379	213,504
48	B.Rose Clemencia no 3													
49	Bel Etang	3,078	3,078	2,736	2,679	2,679	2,679	2,679	2,679	3,135	3,135	3,135	3,135	34,827
50 51 5	Bonne Mere	10,156	10,156	10,156	10,156	10,156	9,947	9,947	10,232	10,298	10,298	10,298	10,298	122,094
52	Camp Ithier	5,244	5,244	5,244	5,206	5,206	5,206	5,206	5,206	5,206	5,206	5,206	5,206	62,586
$\begin{array}{r}53 \\ 54 \\ \hline\end{array}$	Caroline	15,770	15,770	15,770	15,390	15,390	18,620	18,620	18,620	18,620	18,620	18,620	18,620	208,430
$\begin{array}{r}54 \\ 55 \\ \hline\end{array}$	Constance ${ }^{\text {CHH }}$ No1													
56	Constance BH No2	11,630	11,639	11,639	11,639	11,639	11,653	11,713	11,713	11,713	11,713	11,713	11,713	140,116
57	Laventure	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
$\begin{array}{r}58 \\ \hline \text { DRY SE } \\ \hline\end{array}$	Petit Paquet													
$\frac{\text { RY SEASON PUMPING STATIONS (} \mathrm{N} \text {) }}{\text { Melose }}$														
DWs south														
60	Choisy Baie du Cap New													
61	Bananes	3,601	3,601	3,601	3,601	3,601	3,601	3,601	3,572	3,382	4,304	4,304	4,304	${ }^{45,068}$
62	Cafe	1,900	1,900	1,900	2,242	2,242	2,242	2,242	2,242	2,242	2,242	1,900	1,900	25,194
$\stackrel{63}{64}$	${ }_{\text {Cluny }}$	3,440	33,250	33,250	32,680	32,680	32,870	33,820	33,820	34,200	34,200	34,200	34,200	402,610
65	Cluny													
66	Gebert	6,308	6,308	6,308	6,308	6,308	6,308	12,220	12,920	12,920	12,220	-	38,912	128,440
67 68	M.D.M.T. Praisance	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
69	N. France (new)	14,678	14,678	14,678	13,367	13,367	13,367	11,115	11,115	11,115	11,068	11,068	11,068	150,680
70	N. France(old)													
	Trois Boutiques	7,676	7,676	7,676	7,600	7,676	7,676	7,676	7,676	7,752	7,752	7,752	7,752	92,340

-MAV UPPER		14.820	14,820	14,820	10,716	10,716	10,602	10,374	${ }_{6,885}$	8,369	8,369		8,369	
73	Alma											8,369		127,227
74 75	$\frac{\text { Beard }}{\text { Beard (new) }}$													
76	Bonne Veine BH no1													
77	Bonne Veine BH no2													
78	Montee du Fil	7,410	7,410	13,110	13,110	13,110	13,110	13,110	13,110	13,110	7.980	7,980	7.980	130,530
DWS-MAV LOWER			13,262											
80	Bambou (Eau Bonne) BH No1	13,262		13,262	13,001	13,136	13,291	13,291	13,291	${ }^{13,291}$	13,291	13,291	${ }^{13,29}$	158,963
81	Bambou (Eau Bonne) BH No2													
82 83	$\frac{\text { Barkly (BH) }}{\text { Barkly (SP) }}$	17,670	17,442	17,442	17,42	17,442	15,846	14,250	14,250	14,250	14,250	9,234	10,488	180,066
84	Bassin BH No 1	13,224	13,22414,801	13,680	13,680	13,680	13,794	13,794	13,794	13,794	13,794	13,794	13,794	164,046
85	Bassin BH No2													
86 87 88	$\frac{\text { Bassin } 717}{\text { Bassin } 435}$	14,801		14,801	14,801	14,801	14,801	14,763	8,379	8,265	8,265	13,965	13,665	156,408
88	Chamarel BH													
89	Clairfonds ${ }^{\text {BH No. } 1}$	6,460	6,460	3,952	6,802	6,840	6,840	6,840	${ }^{6,840}$	${ }^{6,840}$	6,840	${ }^{6,840}$	6,650	78,204
90	Clairionds 8 BH No. 2		2,812											
91	Ebene BH No1	1,900		2,812	2,812	2,812	2,812	2,812	2,812	2,318	1,900	1,900	1,900	$\begin{array}{r}29,602 \\ 32,148 \\ \hline\end{array}$
${ }_{93}$	Highlands	2,964	2,964	2,964	2,964	2,964	2,964	2,964	2,964	2,223		1,995		
94	Highlands										2,223		1,995	32,148
95	Holyrood	18,810	19,190	19,190	19,190	22,800	22,800	22,800	22,800	22,800	22,800	24,890	24,890	262,960
$\stackrel{96}{97}$	$\frac{\text { Holyrood }}{\text { Holyrod }}$													
98	Holyrood													
99	Holyrood													
$\begin{array}{r}100 \\ 101 \\ \hline 1\end{array}$	$\xrightarrow{\text { Holyrood }}$ Holyrood													
102	Holyrood													
103	Palma	1,911	1,941	1,941	1.941	1,941	1,941	1,941	1,941	1,910	1,910	1.910	1,911	23,140
104	Palmyre 26B													
105	Palmyre 419													
106	Palmyre (new) 827	4,71	4,712	4,712	4,712	4,712	4,712	4,712						
107	Pont Fer (petit camp) BH No1								2,812	2,812	2,812	2,812	2,660	46,992
108	Pont Fer ((efitit camp) BH No2		4,72											
110	Solferino Candos	2,214	2,214	2,280	2,2,24	2,2,591	4,047	4,047	4,047	4,047	4,047	4,047	,47	154
111	Solferino Candos													
$\begin{array}{r}112 \\ 112 \\ \hline 1\end{array}$	$\frac{\text { Solferino Dookun }}{\text { Solferino Dookun }}$	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,712	58,216
$\begin{array}{r}114 \\ \hline 115\end{array}$	$\frac{\text { St Jean }}{\text { St Jean }}$	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,80059,600
115		4,256	256											
117	St Paul BH No2			256	5,396	5,396	5,396	5,396	5,396	5,396	5,396	4,560	4,560	
118 119	$\xrightarrow{\text { Telfair }}$ Telfair	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	6,954	${ }^{86,583}$
120	Trianon	6,726	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	11,552	84968
121	Trianon (New)													
${ }^{122}$	Valentina (Lower Phoenix)	3,914	3,914	3,924	3,933	3,933	3,933	3,933	3,943	3,962	3,962	3,962	3,962	47,272
$\begin{array}{r}123 \\ 124 \\ \hline 1\end{array}$	$\frac{\text { Valentina (Lower Phoenix) }}{\text { Valentina (new) }}$	2,622	2,698	2,736	2,736	2,736	2,812	2,812	2.812	2,812	2,812	2,812	2,812	33,212
125	Yemen	6,897	7,638	7,638	7,638	7,638	7,638	7,638	7,638	6,897	8,265	8,265	8,265	92,055
$\stackrel{126}{127}$	Yemen(0LD)	8,272	8,272	8.140	8.140	8.140	8.140	8.140	8.140	8.140	7.030	7.030	6.802	94.386
		83,137	503,055	506, 105	503,252	508,093	508,997	50,580	498,685	90,679	490,372	84,647	566,248	6,023,850

s No	Site Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	2,005				Total 05
										Sep	Oct	Nov	Dec	
DWS-Port Louis														
1	Beau Bois BH	${ }_{8,132}$	${ }_{8,132}$	8.056	${ }_{8,056}$	${ }_{8,056}$	${ }_{8,056}$	7.866	8,550	8.550	${ }^{8,550}$	8,550	8.550	99,104
2	Beau Bois (New)													
3	Beau Bois													
4	Beau Songes	14,816	14,816	15,391	15,391	15,416	15,416	15,416	15,416	15,416	15,649	15,649	15,649	184,441
5	Beau Songes													
6	Petite Riviere	4.845	4.845	4.845	4.845	4.845	4.845	4.845	5.016	5.073	5,130	5,130	5,130	59,394
7	Pierrefonds	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	159,520
8	St Martin	12,825	12,825	12,825	12.825	12,825	12,825	12,825	4,902	4.902	4.902	4.902	4,902	114,285
DWS- NORTH														
10	B. Vue Mauricia	3,686	3,724	3,724	3,724	3,724	4,104	4,104	4,104	4,104	4,104	4,104	4,104	47,310
11	Bassin Loulou (Gallery)													
12	Bassin loulou (Jamblon)													
13	Bassin Loulou (Robinson)	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
14	Beau Plateau	3,230	3,230	3,230	3,230	3,230	3,230	3,230	3,230	3,192	3,192	3,192	3,154	38,570
15	Bois Mangues (Old P.de Papayes)	3,002	3,002	3,002	3,002	3,002	3,002	3,002	3,002	3,002	2,926	2,926	2,926	35,796
16	Camp La Boue	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
17	Camp Thorel	16,054	16,054	16,072	16,072	16,090	16,090	16,090	16,090	16,918	16,918	16,918	16,918	196,283
18	Cottage (New)	2,926	3,420	3,420	3,420	3,420	3,420	3,420	3,420	3,344	3,344	${ }^{3,344}$	4.560	41,458
19	Cottage-Poonith		11,248	5.700	5,700	5,700	5,700	5,700	5,700	5,700	5,586	4.826	4,826	66,386
20	Esp.Trebuchet													
${ }^{21}$	F. Du Sac-Choisy	9,215	9,320	9,358	9,358	9,358	9,358	9,358	9,358	9,719	9,719	9,719	9,719	113,554
${ }^{22}$	F. Du sac-Choisy	8.835	8.835	8.265	8.265	8.265	8.778	8.778	8.778	8.778	8.778	8.778	8.778	103.911
24	Haute Rive		6,080	5,890	5,890	5,890	5,890	5,890	5,890	5,890	3,154	3,154	3,154	56,772
25	La Clemence	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
26	Labourdonnais	1,900	1,910	2,195	2,195	2,195	2,195	2,195	2,195	2,195	2,176	2,176	2,176	25,698
27	Mapou	2,674	2,725	2,725	2,725	2,761	2,761	2,761	2,761	2,761	${ }_{2,761}$	2,761	2,734	32,907
28	Mon Loisir	4,748	4,748	4,738	4,738	4,738	4,697	4,697	4,682	4,682	4,682	4,677	4,677	56,501
29 30	MSA BH 117	2,318	2,318	2,318	2,280	1,938	1,938	1,938	1,938	1,938	1,938	1,938	1,938	24,738
31	MSA BH 306	7,106	7,068	6,992	6,964	6,926	6,926	6,869	6,821	6,555	6,555	6,555	6,517	81,852
32	MSA BH 309	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1.900	1,900	1.900	1,900	1.900	22,800
$\begin{array}{r}33 \\ 34 \\ \hline\end{array}$	MSA BH 309		15267											
${ }^{34}$		10,217 10,260	10,260	15,267 10,260	15,267 10,146	15,267 10,146	15,267 10,146	15,267 10,146	15,267 10,146	15,186 10,146	14,900 10,146	14,900 10,203	13,436 10,260	$\begin{array}{r}180,510 \\ 122,265 \\ \hline\end{array}$
36	P. D'or No. 1	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
37	P. D'or No. 2	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
38	P. D'or No. 3	3,287	3,078	3,069	3,059	3,031	3,031	3,040	3,040	3,040	3,040	3.040	3,040	36,794
39	P. D'or No. 4	3,620	3,620	3,610	3,610	3,572	3,654	3,670	3,695	3,695	3,695	3,695	3,695	43,827
40	Petite Retraite	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	20,214	20,214	97,428
41	$\frac{\text { Petite Retraite }}{\text { Riche Tere }}$	2.014	2.014	2.014	2,014	2.014	2.014	2,014	2,014	2,014	2.014	2,014	1.976	24,130
43	Schoenfeld													
44	Schoenfeld	4,256	4,256	4,256	4,884	4,484	4,522	4,522	4,522	4,522	4,522	4,522	4,522	53,390
DWS-EAST	Solitude	3,800	3,876	3,876	3,876	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,990	46,816
46	B.Rose Clemencia no1													
47	B.Rose Clemencia no2	19,575	19,713	21,017	21,017	21,017	21,017	21,017	21,017	21,017	18,584	20,623	20,623	246,234
48	B.Rose Clemencia no3													
49	Bel Etang	3,135	3,135	3,135	2,679	2,679	2,679	2,622	2,622	5,016	5,016	5,016	5,016	42,750
50 51	Boone Mere	10,298	11,771	11,771	11,771	11,771	11,771	11,771	11,771	11,771	9,823	9,823	9,823	133,931
52	Camp Ithier	5,206	5,206	5,206	5,206	5,206	5,206	5,206	13,530	13,530	13,530	13,530	13,530	104,092
$\stackrel{53}{54}$	Caroline	18,430	29,450	29,450	29,450	30,400	35,910	35,910	35,910	35,910	35,910	35,910	35,910	388,550
$\stackrel{54}{55}$	Constance ${ }^{\text {EHH }}$ No1													
56	Constance BH No2	11,713	${ }^{11,694}$	21,074	21,285	21,296	21,296	21,296	21,296	21,325	21,346	21,466	21,568	236,654
57	Laventure	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,925	1,925	1,942	1,942	22,933
DRY SEASON PUMPING STATIONS (N)														
59	Melrose BH													
DWs south														
60	Choisy Baie du Cap New													
61	Bananes	4,304	4,304	4,304	4,304	4,190	3,620		3,610	3,411	${ }_{4}, 133$	${ }_{4,133}$	4,133	48,051
62	Cafe	1,900	2,242	2,242	2,242	2,242		4,484	2,242	2,242	2,242	2,242	1,900	26,220
$\frac{63}{64}$	Cluny	34,390	34,770	34,770	35,340	35,340	35,340	35,340	35,340	35,340	35,340	34,390	31,730	417,430
65	Cluny													
66	Gebert	19,456	19,456	19,456	19,456	19,456	12,920	12,920	12,220	12,920	12,920	12,920	5,140	179,940
$\stackrel{67}{68}$	M.D.M.T. Praisance	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,948	1,948	1,948	1,976	23,019
69	N. France (new)	10,897	10,897	11,087	11,172	11,343		22,686	11,343	11,343	11,343	11,343	11,039	134,492
70	N. France((old)													
	Trois Butiques	7,752	7,752	7,752	7,752	7,752		15,504	7,752	7,752	7,752	7,752	7,657	92,929

-MAV UPPER		8.369	8,369	8,369	6,684	7,614	7,614	7,614	7,614	7,614				
73	Alma										7,614	7,614	6,697	91,786
74 75	$\frac{\text { Beard }}{}$ Beard													
75	Bonneara Veine BH ${ }^{\text {cop }}$													
77	Bonne Veine BH no2													
78	$\frac{\text { Montee du Fil }}{\text { Montee du Fil }}$	7,980	7,866	5,358	5,358	5,358	5,358	5,358	5,358	8,549	8,549	8,549	8,549	82,190
DWS-MAV LOWER					14,476									
80	Bambou (Eau Bonne) BH No1	13,285	13,399	14,476		4,476	14,476	14,476	${ }^{14,476}$	14,476	13,857	${ }^{13,857}$	${ }^{13,857}$	169,586
81	Bambou (Eau Bonne) BH No2													
82 83	$\frac{\text { Barkly (BH) }}{\text { Barkly (}}$ (P)	25,650	25,650	25,650	25,650	25,650	25,650	25,650	10,488	10,488	10,488	10,488	10,488	
84	Bassin BHNo 1	13,566	13,566	13,566	13,566	13,566	13,110	10,602	9,804	9,918	9,918	12,084	12,084	145,350
85	Bassin BH No2													
86 87 8	$\frac{\text { Bassin } 717}{\text { Bassin } 435}$	14,127	14,127	14,127	-	34,637	20,511	20,637	21,007	21,007	23,333	24,756	24,756	233,024
88	Chamarel IBH													
89	Clairionds BH No. 1	6,550	6,650	6,156	5,928	6,650	6,550	6,650	6,650	6,650	6,650	10,737	10,737	86,758
90	Clairfonds BH No. 2													
91 92	Ebene BH No1	2,584	2,584	2,584	2,584	4,522	4,522	4,522	4,522	5,884	5,884	5,884	5,884	51,961
93	Highlands	2,052	2,052	2,052	2,052	2,052	2,052	2,052	1,938	1,938	1,938	1,938	1,938	24,054
94	Highlands													
${ }^{96}$	Holyrood	24,890	24,890	24,890	24,890	24,890	23,750	23,750	23,750	23,750	25,080	25,080	25,880	294,690
97 98	Holyrood													
99	Holyrood													
100	Holyrood													
101	Holyrood													
102 103	Holyrood	1,934	1,934	${ }^{1,965}$	1,965	1,965	1,965	1,965	1,965	1,965	1,918	${ }^{1,918}$	1,918	23,375
104	Palmyre 26B													
105	Palmyre 419											1,900	1,900	3,800
106	Palmyre (new) 827				1,976									
107	Pont Fer ((eetit camp) BH NO 1	2,660	2,660	2,660		2,090	2,990	2,090	2,990	2,090	2,090	2,090	1,900	26,486
108 109			2,755		2.774			2.964						
110	Solferino Candos	2,622	2,3,37	2,765	2,337	2,3,37	2,337	2,337	2,337	2,337	2,337	2,337	2,337	34,571 28,329
111	Solferino Candos													
112 113	Solferino Dookun	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,712	4,712	4,712	4,712	4,712	57,608
$\frac{114}{115}$	$\frac{\text { St Jean }}{\text { St Jean }}$	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	2,708	23,608
116	St Paul BH No1													
117	St Paul BH No2	4,560	4,560	4,560	4,560	4,940	4,940	4,940	4,940	4,940	4,940	4,940	4,104	56,924
118 119	$\stackrel{\text { Telfair }}{\text { Telfair }}$	6,954	6,441	6,441	6,384	6,441	6,441	6,441	6,441	6,669	6,669	6,669	6,669	78,660
120	Trianon	11,552	11,552	11,552	11,552	11,552	11,552	12,170	12,170	12,170	12,170	12,170	12,170	142,335
121 122	$\xrightarrow{\text { Trianon (New) }}$													
123	Valentinta (Lower P Phoenix)	3,962	3,962	3,971	4,019	4,019	4,019	4,019	4,019	4,019	4,019	4,000	3,981	48,004
124	Valentina ((ew)	2,774	2,622	2,622	2,622	2,812	2,812	2,812	2,812	2,812	2,812	2,812	2,812	33,136
125 126	Yemenen	8,265	${ }^{8,265}$	8,265	8,265	¢,151	7,011	7,011	7,011	7,011	7,068	7,068	${ }^{8,835}$	92,226
127	Yemen New	8,096	8,096	8,096	${ }_{8,096}$	8,996	8,996	8,996	8,096	8,996	8,996	8,996	8,996	97,152
		537,704	568,000	71,426	555,152	594,884	556,061	596,684	545,547	553,521	549,990	574,580	563,705	767,255

S No	Site Name									2,004				Total 04
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
DWS-Port Louis														
1	Beau Bois BH	8.550	8,550	8.550	8.550	${ }^{8,550}$	8.550	8,550	8,550	8.550	8.550	8.550	8,884	102,334
,	Beau Bois (New)													
3	Beau Bois													
	Beau Songes	15,216	15,216	15,216	14,675	14,675	14,675	14,675	14,675	11,045	14,816	14,816	14,816	174,515
5	Beau Songes													
6	Petite Riviere	5,244	5,244	5,244	5,187	5,187	5,187	5,073	4,902	4,902	4,902	4.845	4,845	60,762
7	Pierrefonds	10,221	10,221	10,221	9,985	9,985	9,985	9,959	9,913	4,549	5,514	10,612	10,612	111,776
8	St Martin	5,130	5,130	5,130	5,130	5,130	5,130	5,130	5,757	5,757	5,757	5,757	12,825	71,763
DWS- NoRTH														
		4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	4,066	48,792
11	Bassin Loulou (Gallery)													
12	Bassin Ioulou (Jamblon)	3,724	3.724	3,724	3,724	3,610	3,610	3,496	3,496	3,496	3,477	${ }_{3,477}$	3,230	42,788
13	Bassin Loulou (Robinson)	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	
14	Beau Plateau	4,560	3,230	3,230	3,230	3,230	3,230	${ }_{3,230}$	3,230	3,230	3,230	${ }_{3,230}$	${ }_{3,230}$	40,090
15	Bois Mangues (Old P.de Papayes)	3,306	3,306	3,306	3,306	3,306	3,306	3,306	2,964	3,002	3,002	3,002	3,002	
16	Camp La Boue	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	${ }^{22,800}$
17	Camp Thorel	10,561	10,561	10,561	10,561	10,561	10,545	10,545	10,545	10,545	10,545	16,052	16,054	137,637
18	Cottage (New)	2,964	2,964	2,964	2,926	2,926	2,964	2,964	2,964	2,964	2,964	2,964	2,964	35,492
19	Cottage-Poonith	5,662	5,738	5,738	5,738	5,738	5,738	5,738	5,738	5,624	5,510	5,624	5,624	68,210
20	Esp.Trebuchet													
21	F. Du Sac-Choisy	9,073	9,101	9,130	9,538	9,538	9,538	9,538	9,538	9,538	9,538	9,215	9,215	112,499
$\stackrel{22}{23}$	F. Du sac-Choisy	8.949	8.949	8.835	8.892	9.120	9.120	9.120	9,120	9.120	9.120	9.120	9.120	108.585
24	Haute Rive	3,040	3,040	3,002	3,002	3,002	3,040	3,040	3,040	3,040	3,040	3,040	3,040	36,366
25	La Clemence	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
26	Labourdonnais	1,957	1,957	1,957	1,957	1,957	1,938	1,938	1,900	1,900	1,900	1,900	1,900	23,161
27	Mapou	2,214	2,214	2,214	2,214	2,214	2,214	2,214	2,206	2.549	2,576	2,659	2,660	28,151
28	Mon Loisir	5,155	5,155	5,155	5,155	4,710	4,711	4,711	4,748	4,748	4,748	4,748	4,748	58,492
29 30	MSA BH 117	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	2,318	2,318	2,318	2,318	24,472
31	MSA BH 306	7,714	7,714	7,572	7,572	7,524	7,192	7,192	7,192	7,192	7,192	7,192	7,192	88,436
32	MSA BH 309	1,900	1.900	1,900	1,900	1,900	1.900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
$\begin{array}{r}33 \\ \hline\end{array}$	MSA BH 309													
${ }_{3}^{34}$		10,260	10,260	${ }_{14,0,860}$	10,203	10,203	10,203	10,203	10,203	10,260	10,260 1020	${ }^{10,260}$	${ }^{10,2620}$	180,678 122,835
36	P. D'or No. 1	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	
37	P. D'or No. 2	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
38	P. D'or ${ }^{\text {No. } 3}$	3,382	3,335	3,335	3,297	3,297	3,297	3,297	3,297	3,297	3,297	3,297	3,297	39,720
39	P. D'or No. 4	3,648	3,639	3,639	3,620	3,620	3,610	3,610	3,620	3,620	3,620	3,620	3,620	43,482
40	Petite Retraite	5,700	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,814	5,700	6, 540
42	Riche Terre	1,900	1,900	1,900	1,900	1,900	1,900	2,014	2,014	2.014	2.014	2.014	2,014	23,484
43	Schoenfeld													
44	Schoenfeld	4,440	4,440	4,40	4,40	4,864	4,826	4,636	4,80	4,256	4,256	4,256	4,256	55,290
DWS-EAST		3,762	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,990	3,762	47,424
46	B.Rose Clemencia no1													
47	B.Rose Clemencia no2		19,347	19,490	19,490	19,490	19,490	19,490	19,490	19,490	18,968	19,379	19,379	213,504
48	B.Rose Clemencia no 3													
49	Bel Etang	3,078	3,078	2,736	2,679	2,679	2,679	2,679	2,679	3,135	3,135	3,135	3,135	34,827
50 51 5	Bonne Mere	10,156	10,156	10,156	10,156	10,156	9,947	9,947	10,232	10,298	10,298	10,298	10,298	122,094
52	Camp Ithier	5,244	5,244	5,244	5,206	5,206	5,206	5,206	5,206	5,206	5,206	5,206	5,206	62,586
$\begin{array}{r}53 \\ 54 \\ \hline\end{array}$	Caroline	15,770	15,770	15,770	15,390	15,390	18,620	18,620	18,620	18,620	18,620	18,620	18,620	208,430
$\begin{array}{r}54 \\ 55 \\ \hline\end{array}$	Constance ${ }^{\text {CHH }}$ No1													
56	Constance BH No2	11,630	11,639	11,639	11,639	11,639	11,653	11,713	11,713	11,713	11,713	11,713	11,713	140,116
57	Laventure	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
$\begin{array}{r}58 \\ \hline \text { DRY SE } \\ \hline\end{array}$	Petit Paquet													
$\frac{\text { RY SEASON PUMPING STATIONS (} \mathrm{N} \text {) }}{\text { Melose }}$														
DWs south														
60	Choisy Baie du Cap New													
61	Bananes	3,601	3,601	3,601	3,601	3,601	3,601	3,601	3,572	3,382	4,304	4,304	4,304	${ }^{45,068}$
62	Cafe	1,900	1,900	1,900	2,242	2,242	2,242	2,242	2,242	2,242	2,242	1,900	1,900	25,194
$\stackrel{63}{64}$	${ }_{\text {Cluny }}$	3,440	33,250	33,250	32,680	32,680	32,870	33,820	33,820	34,200	34,200	34,200	34,200	402,610
65	Cluny													
66	Gebert	6,308	6,308	6,308	6,308	6,308	6,308	12,220	12,920	12,920	12,220	-	38,912	128,440
67 68	M.D.M.T. Praisance	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
69	N. France (new)	14,678	14,678	14,678	13,367	13,367	13,367	11,115	11,115	11,115	11,068	11,068	11,068	150,680
70	N. France(old)													
	Trois Boutiques	7,676	7,676	7,676	7,600	7,676	7,676	7,676	7,676	7,752	7,752	7,752	7,752	92,340

-MAV UPPER		14.820	14,820	14,820	10,716	10,716	10,602	10,374	${ }_{6,885}$	8,369	8,369		8,369	
73	Alma											8,369		127,227
74 75	$\frac{\text { Beard }}{\text { Beard (new) }}$													
76	Bonne Veine BH no1													
77	Bonne Veine BH no2													
78	Montee du Fil	7,410	7,410	13,110	13,110	13,110	13,110	13,110	13,110	13,110	7.980	7,980	7.980	130,530
DWS-MAV LOWER			13,262											
80	Bambou (Eau Bonne) BH No1	13,262		13,262	13,001	13,136	13,291	13,291	13,291	${ }^{13,291}$	13,291	13,291	${ }^{13,29}$	158,963
81	Bambou (Eau Bonne) BH No2													
82 83	$\frac{\text { Barkly (BH) }}{\text { Barkly (SP) }}$	17,670	17,442	17,442	17,42	17,442	15,846	14,250	14,250	14,250	14,250	9,234	10,488	180,066
84	Bassin BH No 1	13,224	13,22414,801	13,680	13,680	13,680	13,794	13,794	13,794	13,794	13,794	13,794	13,794	164,046
85	Bassin BH No2													
86 87 88	$\frac{\text { Bassin } 717}{\text { Bassin } 435}$	14,801		14,801	14,801	14,801	14,801	14,763	8,379	8,265	8,265	13,965	13,665	156,408
88	Chamarel BH													
89	Clairfonds ${ }^{\text {BH No. } 1}$	6,460	6,460	3,952	6,802	6,840	6,840	6,840	${ }^{6,840}$	${ }^{6,840}$	6,840	${ }^{6,840}$	6,650	78,204
90	Clairionds 8 BH No. 2		2,812											
91	Ebene BH No1	1,900		2,812	2,812	2,812	2,812	2,812	2,812	2,318	1,900	1,900	1,900	$\begin{array}{r}29,602 \\ 32,148 \\ \hline\end{array}$
${ }_{93}$	Highlands	2,964	2,964	2,964	2,964	2,964	2,964	2,964	2,964	2,223		1,995		
94	Highlands										2,223		1,995	32,148
95	Holyrood	18,810	19,190	19,190	19,190	22,800	22,800	22,800	22,800	22,800	22,800	24,890	24,890	262,960
$\stackrel{96}{97}$	$\frac{\text { Holyrood }}{\text { Holyrod }}$													
98	Holyrood													
99	Holyrood													
$\begin{array}{r}100 \\ 101 \\ \hline 1\end{array}$	$\xrightarrow{\text { Holyrood }}$ Holyrood													
102	Holyrood													
103	Palma	1,911	1,941	1,941	1.941	1,941	1,941	1,941	1,941	1,910	1,910	1.910	1,911	23,140
104	Palmyre 26B													
105	Palmyre 419													
106	Palmyre (new) 827	4,71	4,712	4,712	4,712	4,712	4,712	4,712						
107	Pont Fer (petit camp) BH No1								2,812	2,812	2,812	2,812	2,660	46,992
108	Pont Fer ((efitit camp) BH No2		4,72											
110	Solferino Candos	2,214	2,214	2,280	2,2,24	2,2,591	4,047	4,047	4,047	4,047	4,047	4,047	,47	154
111	Solferino Candos													
$\begin{array}{r}112 \\ 112 \\ \hline 1\end{array}$	$\frac{\text { Solferino Dookun }}{\text { Solferino Dookun }}$	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,712	58,216
$\begin{array}{r}114 \\ \hline 115\end{array}$	$\frac{\text { St Jean }}{\text { St Jean }}$	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,80059,600
115		4,256	256											
117	St Paul BH No2			256	5,396	5,396	5,396	5,396	5,396	5,396	5,396	4,560	4,560	
118 119	$\xrightarrow{\text { Telfair }}$ Telfair	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	7,239	6,954	${ }^{86,583}$
120	Trianon	6,726	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	6,669	11,552	84968
121	Trianon (New)													
${ }^{122}$	Valentina (Lower Phoenix)	3,914	3,914	3,924	3,933	3,933	3,933	3,933	3,943	3,962	3,962	3,962	3,962	47,272
$\begin{array}{r}123 \\ 124 \\ \hline 1\end{array}$	$\frac{\text { Valentina (Lower Phoenix) }}{\text { Valentina (new) }}$	2,622	2,698	2,736	2,736	2,736	2,812	2,812	2.812	2,812	2,812	2,812	2,812	33,212
125	Yemen	6,897	7,638	7,638	7,638	7,638	7,638	7,638	7,638	6,897	8,265	8,265	8,265	92,055
$\stackrel{126}{127}$	Yemen(0LD)	8,272	8,272	8.140	8.140	8.140	8.140	8.140	8.140	8.140	7.030	7.030	6.802	94.386
		83,137	503,055	506, 105	503,252	508,093	508,997	50,580	498,685	90,679	490,372	84,647	566,248	6,023,850

s No	Site Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	2,005				Total 05
										Sep	Oct	Nov	Dec	
DWS-Port Louis														
1	Beau Bois BH	${ }_{8,132}$	${ }_{8,132}$	8.056	${ }_{8,056}$	${ }_{8,056}$	${ }_{8,056}$	7.866	8,550	8.550	${ }^{8,550}$	8,550	8.550	99,104
2	Beau Bois (New)													
3	Beau Bois													
4	Beau Songes	14,816	14,816	15,391	15,391	15,416	15,416	15,416	15,416	15,416	15,649	15,649	15,649	184,441
5	Beau Songes													
6	Petite Riviere	4.845	4.845	4.845	4.845	4.845	4.845	4.845	5.016	5.073	5,130	5,130	5,130	59,394
7	Pierrefonds	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	13,293	159,520
8	St Martin	12,825	12,825	12,825	12.825	12,825	12,825	12,825	4,902	4.902	4.902	4.902	4,902	114,285
DWS- NORTH														
10	B. Vue Mauricia	3,686	3,724	3,724	3,724	3,724	4,104	4,104	4,104	4,104	4,104	4,104	4,104	47,310
11	Bassin Loulou (Gallery)													
12	Bassin loulou (Jamblon)													
13	Bassin Loulou (Robinson)	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
14	Beau Plateau	3,230	3,230	3,230	3,230	3,230	3,230	3,230	3,230	3,192	3,192	3,192	3,154	38,570
15	Bois Mangues (Old P.de Papayes)	3,002	3,002	3,002	3,002	3,002	3,002	3,002	3,002	3,002	2,926	2,926	2,926	35,796
16	Camp La Boue	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
17	Camp Thorel	16,054	16,054	16,072	16,072	16,090	16,090	16,090	16,090	16,918	16,918	16,918	16,918	196,283
18	Cottage (New)	2,926	3,420	3,420	3,420	3,420	3,420	3,420	3,420	3,344	3,344	${ }^{3,344}$	4.560	41,458
19	Cottage-Poonith		11,248	5.700	5,700	5,700	5,700	5,700	5,700	5,700	5,586	4.826	4,826	66,386
20	Esp.Trebuchet													
${ }^{21}$	F. Du Sac-Choisy	9,215	9,320	9,358	9,358	9,358	9,358	9,358	9,358	9,719	9,719	9,719	9,719	113,554
${ }^{22}$	F. Du sac-Choisy	8.835	8.835	8.265	8.265	8.265	8.778	8.778	8.778	8.778	8.778	8.778	8.778	103.911
24	Haute Rive		6,080	5,890	5,890	5,890	5,890	5,890	5,890	5,890	3,154	3,154	3,154	56,772
25	La Clemence	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
26	Labourdonnais	1,900	1,910	2,195	2,195	2,195	2,195	2,195	2,195	2,195	2,176	2,176	2,176	25,698
27	Mapou	2,674	2,725	2,725	2,725	2,761	2,761	2,761	2,761	2,761	${ }_{2,761}$	2,761	2,734	32,907
28	Mon Loisir	4,748	4,748	4,738	4,738	4,738	4,697	4,697	4,682	4,682	4,682	4,677	4,677	56,501
29 30	MSA BH 117	2,318	2,318	2,318	2,280	1,938	1,938	1,938	1,938	1,938	1,938	1,938	1,938	24,738
31	MSA BH 306	7,106	7,068	6,992	6,964	6,926	6,926	6,869	6,821	6,555	6,555	6,555	6,517	81,852
32	MSA BH 309	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1.900	1,900	1.900	1,900	1.900	22,800
$\begin{array}{r}33 \\ 34 \\ \hline\end{array}$	MSA BH 309		15267											
${ }^{34}$		10,217 10,260	10,260	15,267 10,260	15,267 10,146	15,267 10,146	15,267 10,146	15,267 10,146	15,267 10,146	15,186 10,146	14,900 10,146	14,900 10,203	13,436 10,260	$\begin{array}{r}180,510 \\ 122,265 \\ \hline\end{array}$
36	P. D'or No. 1	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
37	P. D'or No. 2	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	22,800
38	P. D'or No. 3	3,287	3,078	3,069	3,059	3,031	3,031	3,040	3,040	3,040	3,040	3.040	3,040	36,794
39	P. D'or No. 4	3,620	3,620	3,610	3,610	3,572	3,654	3,670	3,695	3,695	3,695	3,695	3,695	43,827
40	Petite Retraite	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	5,700	20,214	20,214	97,428
41	$\frac{\text { Petite Retraite }}{\text { Riche Tere }}$	2.014	2.014	2.014	2,014	2.014	2.014	2,014	2,014	2,014	2.014	2,014	1.976	24,130
43	Schoenfeld													
44	Schoenfeld	4,256	4,256	4,256	4,884	4,484	4,522	4,522	4,522	4,522	4,522	4,522	4,522	53,390
DWS-EAST	Solitude	3,800	3,876	3,876	3,876	3,914	3,914	3,914	3,914	3,914	3,914	3,914	3,990	46,816
46	B.Rose Clemencia no1													
47	B.Rose Clemencia no2	19,575	19,713	21,017	21,017	21,017	21,017	21,017	21,017	21,017	18,584	20,623	20,623	246,234
48	B.Rose Clemencia no3													
49	Bel Etang	3,135	3,135	3,135	2,679	2,679	2,679	2,622	2,622	5,016	5,016	5,016	5,016	42,750
50 51	Boone Mere	10,298	11,771	11,771	11,771	11,771	11,771	11,771	11,771	11,771	9,823	9,823	9,823	133,931
52	Camp Ithier	5,206	5,206	5,206	5,206	5,206	5,206	5,206	13,530	13,530	13,530	13,530	13,530	104,092
$\stackrel{53}{54}$	Caroline	18,430	29,450	29,450	29,450	30,400	35,910	35,910	35,910	35,910	35,910	35,910	35,910	388,550
$\stackrel{54}{55}$	Constance ${ }^{\text {EHH }}$ No1													
56	Constance BH No2	11,713	${ }^{11,694}$	21,074	21,285	21,296	21,296	21,296	21,296	21,325	21,346	21,466	21,568	236,654
57	Laventure	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,925	1,925	1,942	1,942	22,933
DRY SEASON PUMPING STATIONS (N)														
59	Melrose BH													
DWs south														
60	Choisy Baie du Cap New													
61	Bananes	4,304	4,304	4,304	4,304	4,190	3,620		3,610	3,411	${ }_{4}, 133$	${ }_{4,133}$	4,133	48,051
62	Cafe	1,900	2,242	2,242	2,242	2,242		4,484	2,242	2,242	2,242	2,242	1,900	26,220
$\frac{63}{64}$	Cluny	34,390	34,770	34,770	35,340	35,340	35,340	35,340	35,340	35,340	35,340	34,390	31,730	417,430
65	Cluny													
66	Gebert	19,456	19,456	19,456	19,456	19,456	12,920	12,920	12,220	12,920	12,920	12,920	5,140	179,940
$\stackrel{67}{68}$	M.D.M.T. Praisance	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,948	1,948	1,948	1,976	23,019
69	N. France (new)	10,897	10,897	11,087	11,172	11,343		22,686	11,343	11,343	11,343	11,343	11,039	134,492
70	N. France((old)													
	Trois Butiques	7,752	7,752	7,752	7,752	7,752		15,504	7,752	7,752	7,752	7,752	7,657	92,929

-MAV UPPER		8.369	8,369	8,369	6,684	7,614	7,614	7,614	7,614	7,614				
73	Alma										7,614	7,614	6,697	91,786
74 75	$\frac{\text { Beard }}{}$ Beard													
75	Bonneara Veine BH ${ }^{\text {cop }}$													
77	Bonne Veine BH no2													
78	$\frac{\text { Montee du Fil }}{\text { Montee du Fil }}$	7,980	7,866	5,358	5,358	5,358	5,358	5,358	5,358	8,549	8,549	8,549	8,549	82,190
DWS-MAV LOWER					14,476									
80	Bambou (Eau Bonne) BH No1	13,285	13,399	14,476		4,476	14,476	14,476	${ }^{14,476}$	14,476	13,857	${ }^{13,857}$	${ }^{13,857}$	169,586
81	Bambou (Eau Bonne) BH No2													
82 83	$\frac{\text { Barkly (BH) }}{\text { Barkly (}}$ (P)	25,650	25,650	25,650	25,650	25,650	25,650	25,650	10,488	10,488	10,488	10,488	10,488	
84	Bassin BHNo 1	13,566	13,566	13,566	13,566	13,566	13,110	10,602	9,804	9,918	9,918	12,084	12,084	145,350
85	Bassin BH No2													
86 87 8	$\frac{\text { Bassin } 717}{\text { Bassin } 435}$	14,127	14,127	14,127	-	34,637	20,511	20,637	21,007	21,007	23,333	24,756	24,756	233,024
88	Chamarel IBH													
89	Clairionds BH No. 1	6,550	6,650	6,156	5,928	6,650	6,550	6,650	6,650	6,650	6,650	10,737	10,737	86,758
90	Clairfonds BH No. 2													
91 92	Ebene BH No1	2,584	2,584	2,584	2,584	4,522	4,522	4,522	4,522	5,884	5,884	5,884	5,884	51,961
93	Highlands	2,052	2,052	2,052	2,052	2,052	2,052	2,052	1,938	1,938	1,938	1,938	1,938	24,054
94	Highlands													
${ }^{96}$	Holyrood	24,890	24,890	24,890	24,890	24,890	23,750	23,750	23,750	23,750	25,080	25,080	25,880	294,690
97 98	Holyrood													
99	Holyrood													
100	Holyrood													
101	Holyrood													
102 103	Holyrood	1,934	1,934	${ }^{1,965}$	1,965	1,965	1,965	1,965	1,965	1,965	1,918	${ }^{1,918}$	1,918	23,375
104	Palmyre 26B													
105	Palmyre 419											1,900	1,900	3,800
106	Palmyre (new) 827				1,976									
107	Pont Fer ((eetit camp) BH NO 1	2,660	2,660	2,660		2,090	2,990	2,090	2,990	2,090	2,090	2,090	1,900	26,486
108 109			2,755		2.774			2.964						
110	Solferino Candos	2,622	2,3,37	2,765	2,337	2,3,37	2,337	2,337	2,337	2,337	2,337	2,337	2,337	34,571 28,329
111	Solferino Candos													
112 113	Solferino Dookun	4,864	4,864	4,864	4,864	4,864	4,864	4,864	4,712	4,712	4,712	4,712	4,712	57,608
$\frac{114}{115}$	$\frac{\text { St Jean }}{\text { St Jean }}$	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	1,900	2,708	23,608
116	St Paul BH No1													
117	St Paul BH No2	4,560	4,560	4,560	4,560	4,940	4,940	4,940	4,940	4,940	4,940	4,940	4,104	56,924
118 119	$\stackrel{\text { Telfair }}{\text { Telfair }}$	6,954	6,441	6,441	6,384	6,441	6,441	6,441	6,441	6,669	6,669	6,669	6,669	78,660
120	Trianon	11,552	11,552	11,552	11,552	11,552	11,552	12,170	12,170	12,170	12,170	12,170	12,170	142,335
121 122	$\xrightarrow{\text { Trianon (New) }}$													
123	Valentinta (Lower P Phoenix)	3,962	3,962	3,971	4,019	4,019	4,019	4,019	4,019	4,019	4,019	4,000	3,981	48,004
124	Valentina ((ew)	2,774	2,622	2,622	2,622	2,812	2,812	2,812	2,812	2,812	2,812	2,812	2,812	33,136
125 126	Yemenen	8,265	${ }^{8,265}$	8,265	8,265	¢,151	7,011	7,011	7,011	7,011	7,068	7,068	${ }^{8,835}$	92,226
127	Yemen New	8,096	8,096	8,096	${ }_{8,096}$	8,996	8,996	8,996	8,096	8,996	8,996	8,996	8,996	97,152
		537,704	568,000	71,426	555,152	594,884	556,061	596,684	545,547	553,521	549,990	574,580	563,705	767,255

DWS-M	V UPPER													
73	Alma													-
74	Beard													0
75	Beard (new)													
76	Bonne Veine BH no1													
78	Montee du Fil													
79	Montee du Fil			155	305			325	230					1,015
DWS-M	VLOWER													-
80	Bambou (Eau Bonne) BH No1	2,310												2,310
82	Barkly (BH)													
83	Barkly (SP)													0
84	Bassin BH No 1												155	155
85	Bassin BH No2													
86	Bassin 717	175	195	195	195							7,270		8,030
88	Chamarel BH													
89	Clairfonds BH No. 1			45	160									
90	Clairfonds BH No. 2													${ }^{205}$
91	Ebene BH No1													
$\stackrel{92}{93}$	Ebene BH No2													
94	Highlands													0
95	Holyrood													
96 97 97	Holyrood													
98	Holyrood	285		450	225	265	230	115	360	740				
99	Holyrood				225	265			360		770	730	985	5,155
$\frac{100}{101}$	Holyrood													
102	Holyrood													
103	Palma				20	55								75
104	Palmyre 26B													
105	Palmyre 419													
106	Palmyre (new) 827													
107	Pont Fer (petit camp) BH No1													0
108	Pont Fer (petit camp) BH No2													
110	Solferino Candos													
111	Solferino Candos						140							140
112	Solferino Dookun													
113	Solferino Dookun													-
$\frac{114}{115}$	St Jean	140	260	185	180	95						60	165	1,085
115	St Jean													
117	St Paul BH No2													0
118	Telfair	1,325	1,540	1,500	1,490	1,480		1,340	1,055	1,095	1,015	1,000	1,015	15,280
119	Telfair	1,225	1,440	1,000	1,490	1,480	1,42s	1,340	1,055	1,095	1,015	1,000	1,015	15,280
120	Trianon												70	70
121	Trianon (New)													
122	Valentina (Lower Phoenix)													-
123	Valentina (Lower Phoenix)													
124	Valentina (new)			50										50
126	Yemen(OLD)													
127	Yemen New													-
		850.00	8,350.00	8,935.00	8,195.00	9,305.00	9,490.00	7,915.00	7,675.00	10,050.00	7,955.00	15,860.00	8,320.00	111,900.00

S No	Site Name	Jan	Feb	- Mar	Apr	May	Jun					Nov ${ }^{2005}$		
								n Jul	ui Aug	Sep	p Oct			
DWS- Port Louis														
1	Beau Bois BH	410	415	415	410	365	0	0	0	0	0	0	0	2,015
2	Beau Bois (New)													
3	Beau Bois													
4	Beau Songes	0	0	0	125	2075	0	0	0	0	0	0	0	2,200
5	Beau Songes													
6	Petite Riviere	170	115	170	360	140	360	- 475	$5 \quad 295$	355	$5 \quad 540$	$\underline{645}$	1680	5,305
7	Pierrefonds													
8	St Martin	225	85	85	85	85	85	- 85	85	85	$5{ }^{85}$	85	85	1,160
DWS- NORTH														
10	B. Vue Mauricia	150	175	175	175	175	0	0	$0 \quad 165$	150	165	150	150	1,630
11	Bassin Loulou (Gallery)													
12	Bassin loulou (Jamblon)	120	130	-155	0	,	0	0	0		$0 \quad 0$	0	0	405
13	Bassin Loulou (Robinson)													
14	Beau Plateau	205	205	210	205	205	105		0		0	0	0	1,135
15	Bois Mangues (Old P.de Papayes)													
16	Camp La Boue													
17	Camp Thorel													
18	Cottage (New)	0	100	0		0	0	0	0	0	0	0	0	100
19	Cottage-Pooonith		630	400	230	- 50					0	0	0	1,310
20	Esp.Trebuchet	530	1070	0	260	- 260	0	0	0	0	0	0	0	2,120
21	F. Du Sac-Choisy					435								435
22	F. Du Sac-Choisy					- ${ }^{435}$								
23	F. Du Sac-forbach	555	565	- 530	530	- ${ }^{530}$	-360		$0 \quad 0$		0 820	0	0	3,890
24	Haute Rive			0	55	- 35	35	5	35	55	55	${ }^{2} 70$	70	430
26	Labourdonnais	450	0	40	0	0		030	0	90	125	- 10	0	755
27	Mapou	125	125	125	125	115	30	0	0	0	$0 \quad 130$	0	0	775
28	Mon Loisir													
29	MSA BH 117	130	160	145	155	170	175	1750	$180 \quad 180$	160	150	180	160	1,945
31	MSA BH 306	320	200	75	75	-75	0	0	0	0	0	0	0	745
32	MSA BH 309													
33	MSA BH 309	40	145	S	10	${ }^{150}$		0	0	${ }^{35}$	${ }^{65}$	145	145	${ }^{735}$
34	P. Bon Espoir	530	1070		260	- 260	0	0	0	0	0	0	0	2,120
35	P. D'Or (New)	465	460	405	60		0	0	$0 \quad 0$	0	$0 \quad 0$	360	120	1,870
36	P. D'Or No. 1													
37	P. D'Or No. 2	105	110	105	100	95	85	5	$5 \quad 100$	95	$5 \quad 20$	25	0	845
38	P. D'Or No. 3													
39	P. D'Or No. 4													-
40	Petite Retraite	165	165	165	165	165	200	200	200	600	0	475	425	2,925
42	Petite Retraite													
43	Schoenfeld													
44	Schoenfeld		0		105	80	0	0	0		0		${ }^{0}$	185
45	Solitude	65	90	90	90	90	90	- 500	- 65	65	- 90	- 90	95	1,420
	DWS-EAST													
46	B.Rose Clemencia no1	0	0	0	540	645	535	5435	5320	0	$0 \quad 105$	0	0	2,580
47	B.Rose Clemencia no2													
48	B.Rose Clemencia n 3													
49	Bel Etang	30	30	30	30	30	30	30	30	30	30	30	30	360
50	Bonne Mere	115	140	140	115	115	115	- 115	$5 \quad 115$	- 55	0	55	0	1,080
51	Bonne Mere													
52	Camp Ithier	0	0	0	0	0			$0 \quad 0$	270	265	- 270	270	1,075
53	Caroline	0	0	0	-	355	840	210	210	210	0	0	0	1,825
54	Caroline													
55	Constance BH No1													-
56	Constance BH No2	0	0	0	0	0	135	140	135	205	200	250	120	1.185
58	Petit Paquet													
DRY	SEASON PUMPING STATIONS (N)													
59	Melrose BH													
DWS S	UTH													-
60	Choisy Baie du Cap New													
61	Bananes										265			
62	Café		50	${ }^{105}$										155
64	Cluny	1,410	1,425	1,400	1,655	1,005	740	350	$5{ }^{530}$	930	1,095	1,105	1,105	12,750
65	${ }^{\text {Cluny }}$ Gebert													
67	M.D.M.T- Plaisance													
68	M.D.M.T- Plaisance									10	45	${ }^{45}$	${ }^{35}$	135
69	N. France (new)													
70	N. France(old)													
71 72	Trois Boutiques				270									270

s No	Site Name	2004												Total 04
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
VS-Port Louis														
1	Beau Bois BH													
2	Beau Bois (New)													
3	Beau Bois													
4	Beau Songes													
5	Beau Songes													
6	Petite Riviere													
7	Pierrefonds													
8	St Martin													
9	St Martin													
WS- NORTH														
	B. Vue Mauricia	0.69	0.76	0.61	0.72	0.74	0.71	0.73	0.67	0.72	0.83	0.74	0.71	0.72
11	Bassin Loulou (Gallery)													
12	Bassin loulou (Jamblon)	0.62	0.62	0.51	0.59	0.52	0.74	0.56	0.47	0.57	0.54	0.96	0.88	0.61
13	Bassin Loulou (Robinson)	1.10	1.16	3.25	\#DIVIO!	\#DIVI0!	\#DIVI0!	\#DIV/0!	\#DIV/0!	\#DIV0!	\#DIV0!	\#DIV0!	\#DIV0!	2.39
14	Beau Plateau	0.89	1.10	0.80	0.87	0.77	0.94	0.82	0.82	0.95	0.98	0.84	0.92	0.89
15	Bois Mangues (Old P.de Papayes)	0.72	0.83	0.70	0.78	0.78	0.75	0.80	0.72	0.75	0.86	0.78	0.75	0.77
16	Camp La Boue	0.76	1.07	0.97	1.01	0.87	0.83	0.86	0.82	0.89	0.82	0.83	1.05	0.89
17	Camp Thorel	0.87	1.08	1.06	1.17	1.12	1.14	1.10	1.13	1.21	1.12	1.29	1.71	1.16
18	Cottage (New)	2.39	2.74	2.43	2.46	2.70	2.59	2.57	2.33	2.76	0.93	0.83	0.87	1.73
19	Cottage-Poonith	0.82	0.95	0.93	0.97	0.94	0.86	0.86	0.85	1.07	1.01	0.90	0.98	0.92
20	Esp.Trebuchet													
21	F. Du Sac-Choisy	2.47	2.57	2.34	2.55	2.35	2.52	2.39	2.62	2.69	2.46	2.60	2.59	2.51
22	F. Du Sac--forbaisy	0.85	0.83	0.71	0.70	0.81	1.05	0.92	0.80	0.85	0.93	0.80	0.78	0.83
24	Haute Rive	0.84	1.02	0.81	0.88	0.82	0.96	0.80	0.79	0.98	1.27	0.96	0.85	0.91
25	La Clemence													
26	Labourdonnais	0.88	0.88	0.88	0.75	0.81	0.86	0.82	0.83	0.91	0.87	0.96	0.95	0.86
27	Mapou	0.65	1.45	1.18	1.30	1.21	1.34	1.22	1.20	1.36	1.16	1.18	1.16	1.20
28	Mon Loisir	1.22	1.30	1.02	1.09	0.96	1.21	1.06	1.12	1.23	1.17	1.23	1.19	1.14
29	MSA BH 117	0.37	0.42	0.36	0.37	0.44	0.40	0.40	0.30	0.39	0.47	0.40	0.39	0.39
31	MSA BH 17	321	0.88	0.77	0.92	079	087	078	080	087	081	0.87	0.94	0.90
32	MSA BH 309											0.8	027	
33	MSA BH 309	0.07	0.67	0.47	\#DIV0!	\#DIVIo!	\#DIV0!	\#DIV/0!	\#DIV10!	\#DIV10!	\#DIV/0!	0.04	0.27	0.44
34	P. Bon Espoir	1.28	1.30	1.16	1.31	1.17	1.21	1.15	1.14	1.28	1.23	1.43	1.37	1.25
35	P. D'Or (New)	1.05	0.89	0.86	1.04	0.95	0.68	0.70	1.00	1.05	0.99	0.95	0.94	0.93
36	P. D'Or No. 1	0.61	0.67	0.60	0.60	2.13	15.80	\#DIV/0!	0.23	0.74	0.69	0.68	0.62	0.69
37	P. D'Or No. 2	1.54	1.62	1.43	1.59	1.49	1.61	1.53	1.05	1.31	0.98	0.97	1.09	1.31
38	P. D'Or No. 3	0.44	0.48	0.41	0.43	1.79	0.16	0.36	0.37	0.42	0.41	0.45	0.44	0.43
39	P. D'Or No. 4	0.46	0.49	0.41	0.43	0.38	0.35	0.34	0.38	0.45	0.45	0.48	0.39	0.41
40	Petite Retraite	0.82	1.08	0.88	0.96	0.77	0.93	0.78	0.75	0.91	1.04	0.97	0.89	0.90
41	Petite Retraite	0.74	0.91	0.79	0.74	0.67	0.77	0.77	0.72	0.85	0.87	0.92	0.81	079
43	Schoenfeld													0.79
44	Schoenfeld	0.78	0.67	0.55	0.62	0.55	0.63	0.47	0.51	0.61	0.72	0.65	0.58	0.60
45	Solitude	0.79	1.54	\#DIV/0!	\#DIV/0!	6.47	\#DIV/0!	\#DIV/0!	\#DIV0!	\#DIV0!	\#DIV/0!	1.06	0.83	1.95
DWS-EAST					0.09									
46	B.Rose Clemencia no 1			0.07		0.09	0.09	0.09	0.09	0.09	0.93	1.02	0.98	0.30
47	B.Rose Clemencia no2													
48	B.Rose Clemencia 03													
49	Bel Etang												0.22	3.83
50	Bonne Mere	0.61	0.64	0.53	0.61	0.56	0.57	0.54	0.56	0.63	0.60	0.62	0.57	0.59
51	Bonne Mere													
52 53	Camp Ithier	1.01	1.42	1.33	1.22	1.31	1.15	1.22	1.11	1.30	1.17	1.23	1.30	1.23
53	Caroline						0.65	0.63	0.68	0.76	0.65	0.72	0.71	0.68
55	Constance BH No1	0.55	0.59	0.51	0.56	0.53	0.60	${ }^{0.48}$	0.55	0.57	0.53	0.58	0.54	0.55
56	Constance BH No2													
57	Laventure	1.95	1.39	1.16	1.28	1.24	1.28		1.22	1.16	1.32	1.29	1.33	1.30
58	Petit Paquet													
PUMPING STATIONS (N)														
OWS SOUTH Merose BH														
60	Choisy Baie du Cap New	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61	Bananes	0.49						0.19		0.05	0.52	0.58	0.49	0.58
62	Café	0.60	0.78	0.55	0.67	0.72	0.57	0.65	0.50	0.77	0.68	0.76	0.68	0.66
63	Cluny	0.57	0.58	0.58	0.55	0.59	0.50	0.59	0.47	0.61	0.65	0.60	0.54	0.57
$\frac{64}{65}$	${ }_{\text {Cluny }}$													
65	Cluny	0.94	0.55	0.81	0.43	0.49	0.40	0.51	0.44	0.58	0.57	0.00	1.24	0.56
67	M.D.M.T- Plaisance	0.59	${ }^{0.73}$	0.74	0.74	0.66	0.77	0.69	0.68	0.71	0.72	0.73	0.78	${ }^{0.71}$
68	$\frac{\text { M.D.M.T- Plaisance }}{\text { N. France }}$	${ }_{0} 0.92$									1.01	1.18	1.08	
70	N. France((old)				0.46	0.47	${ }^{0.45}$	0.49	0.38	${ }^{0.54}$				\#DIV/0!
71	Trois Boutiques	${ }^{0.50}$	${ }^{0.50}$	0.42							0.50	${ }^{0.56}$	0.49	0.48

s No	Site Name	2004												Total 04
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
VS-Port Louis														
S-MAV UPPER														
73	Alma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74	Beard	0.48	0.47	0.43	0.43	0.41	0.43	0.41	0.41	0.46	0.44	0.47	0.43	0.44
75 76	$\frac{\text { Beard (new) }}{\text { Bonne Veine }} \mathrm{BH}$													
76	Bonne Veine BH no1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	Montee du Fil	0.36	0.37	0.38	0.42	0.37	0.35	0.54	0.51	0.52	0.46	0.44	0.40	0.43
S-MAV LOWER														
80	Bambou (Eau Bonne) BH No1											217		
81	Bambou (Eau Bonne) BH No2	0.3	1.89	1.50	1.76	1.75		2.20	1.5	2.06	1.94			
82	$\frac{\text { Barkly (} \mathrm{BH} \text {) }}{\text { Barkly (} \mathrm{SP} \text {) }}$	1.22	1.18	0.97	0.95	0.47	0.64	0.90	0.59	0.91	0.72	0.81	0.96	0.85
84	Bassin BH No 1	0.64	1.06	0.82	0.88	0.98	0.84	0.87	0.81	0.98	0.94	0.76	0.23	0.81
85	Bassin BH No2													
86	Bassin 717	2.04	1.69	1.31	1.33	1.47	1.78	2.12	1.78	2.63	1.07	1.55	2.05	1.66
88	Chamarel BH	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
89	Clairfonds BH No. 1													
90	Clairfonds BH No. 2	0.69	0.65	0.46	0.61	1.88	1.76	1.66	0.52	0.56	0.51	0.54	0.65	0.70
91	Ebene BH No1	0.46	0.57	0.51	0.38	0.32	0.42	0.65	0.35	0.48	0.34	0.39	0.54	0.44
92	$\frac{\text { Ebene BH No2 }}{\text { Highlands }}$													
94	Highlands	1.10	20	0.90	0.95	0.76	0.82	0.58	0.57	0.74	0.62	0.74	0.59	0.78
95	Holyrood													
96	Holyrood													
97	Holyrood													
98	Holyrood	0.54	0.63	0.47	0.51	0.52	0.47	0.70	0.39	0.63	0.44	0.58	0.67	0.53
100	Holyrood													
101	Holyrood													
102	Holyrood													
103	Palma	0.51	0.56	0.46	0.52	\#DIV/0!	\#DIV/0!	0.24	0.24	0.50	0.50	0.54	0.49	0.49
104	Palmyre 26B	0.79	1.09	0.32	0.38	0.84	0.66	1.02	0.45	0.72	0.71	0.35	0.64	0.63
105	Palmyre 419	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
106	Palmyre (new) 827	2.09	2.70	1.65	1.85	2.11	1.95	2.61	1.67	2.46	2.15	1.99	2.02	2.07
107	Pont Fer (peetit camp) BH No1	0.91	1.01	0.81	0.82	1.07	0.73	1.18	0.70	0.82	0.64	0.70	0.70	0.83
108	Pont Fer (petit camp) BH No2	0.91	1.01	0.81	0.82	1.07	0.73	1.18	0.70	0.82	0.64	0.70	0.70	0.83
109	Solferino BH	0.94	0.97	0.72	0.48	0.86	0.81	1.34	0.91	1.54	0.68	0.72	0.73	0.83
	Solferino Candos	0.17	0.20	0.13	0.15	0.17	0.09	0.16	0.10	0.18	0.19	0.20	0.20	0.16
111	Solferino Candos													
113	Soliererino Dookun	0.72	0.87	1.01	1.49	1.27	0.68	0.98	0.51	0.85	0.60	1.15	0.95	0.85
114	St Jean	0.52	0.60	0.36	0.37	0.40	0.52	0.62	0.43	0.57	0.56	0.72	1.19	0.53
115	St Jean													
116	$\frac{\text { St Paul BH No1 }}{\text { St Paul }}$	0.52	0.73	0.56	0.59	0.39	0.28	0.41	0.57	0.46	0.42	0.40	0.58	0.46
117	$\frac{\text { St Paul BH No2 }}{\text { Telfair }}$													
118	Telfair	0.14	0.11	0.10	0.11	0.10	0.12	0.12	0.13	0.14	0.14	0.14	0.13	0.12
120	Trianon													
121	Trianon (New)	0.46	0.49	0.39	0.41	0.41	0.39	0.53	0.33	0.62	0.37	0.4	0.61	0.45
122 123	Valentina (Lower Phoenix)	0.63	0.64	0.45	0.53	0.47	0.62	0.72	0.53	0.68	0.64	0.72	0.73	0.60
123 124	$\frac{\text { Valentina (Lower Phoenix) }}{\text { Valentina (new) }}$	1.44	1.98	1.31	1.21	0.91	1.10	1.16	0.99	1.32	1.23	1.57	1.76	1.28
125	Yemen	0.79	0	3	0.80	0.84	0.76	1.26	0.52	0.91	0.89	0.80	0.72	0.87
126	Yemen(OLD)	3.35	2.31	1.45	1.42	1.71	1.31	1.95	1.08	2.01	1.59	1.55	1.50	1.66
127	Yemen New	0.72	0.78	0.64	0.68	0.66	0.64	0.69	0.59	0.73	0.71	0.75	0.76	0.69

s No	Site Name	2005												Total 05
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
VS-Port Louis														\#DIV/0!
1	Beau Bois BH	0.16	0.18	0.17	0.18	0.15	0.16	0.16	0.18	0.18	0.17	0.18	0.18	0.17
2	Beau Bois (New)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	Beau Bois	\#DIV/0!	\#DIVI0!	\#DIV/0!										
4	Beau Songes	1.16	3.92	\#DV/0!	\#DIV0!	\#DIV/0!	0.18	0.85	0.91	1.02	1.33	0.93	1.15	1.19
5	Beau Songes		3.92											
6	Petite Riviere	\#DIV/0!	\#DIVI0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!							
7	Pierrefonds	1.03	1.98	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	0.38	0.95	0.18	0.17	0.37	1.04	1.10
8	St Martin	0.64	0.89	0.93	1.37	0.55	0.75	0.59	0.59	0.57	0.56	0.66	0.60	0.68
9	St Martin	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV0!	\#DIV/0!	\#DIV0!	\#DIV/0!						
WS- NORTH		\#DIV0!	\#DIVI0!	\#DIV/0!	\#DIV0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV0!	\#DIV0!	\#DIV/0!
10	B. Vue Mauricia	0.72	0.89	0.68	0.66	0.75	0.73	0.76	0.60	0.75	0.67	0.64	0.90	0.72
11	Bassin Loulou (Gallery)													
12	Bassin loulou (Jamblon)	0.57	0.60	0.38	0.38	0.48	0.47	0.48	0.47	0.63	0.43	0.38	0.41	0.47
13	Bassin Loulou (Robinson)	\#DIV/0!	\#DIVI0!	\#DIVIO!	\#DIV/0!	\#DIVO!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIVIO!	\#DIV/0!	\#DIV/0!	\#DIV0!	\#DIVI0!
14	Beau Plateau	0.97	1.29	0.59	0.77	0.82	0.88	0.71	0.74	0.86	0.88	0.74	0.70	0.82
15	Bois Mangues (Old P.de Papayes)	0.76	0.94	0.74	0.72	0.81	0.75	0.83	0.77	0.79	0.85	0.77	0.79	0.79
16	Camp La Boue	1.25	1.31	1.53	1.50	1.69	1.62	0.59	2.23	1.38	1.12	1.24	1.44	1.31
17	Camp Thorel	1.32	1.50	1.22	1.25	1.38	1.52	1.32	1.41	1.40	1.30	1.54	1.48	1.38
18	Cottage (New)	0.81	1.11	0.88	0.91	0.75	0.92	0.76	0.78	0.81	0.87	0.77	0.84	0.85
19	Cottage-Poonith	0.00	2.09	0.80	0.83	0.92	1.05	0.94	0.83	0.93	0.92	0.87	0.76	0.90
20	Esp.Trebuchet													
21	F. Du Sac-Choisy	2.61	3.59	3.07	3.00	2.19	3.14	3.03	2.61	2.73	2.58	2.73	2.77	2.81
22	F. Du Sac--forbaisy	0.75	0.86	0.59	0.63	0.62	0.71	0.64	0.74	0.71	0.63	0.81	0.68	0.69
24	Haute Rive	0.00	1.94	0.87	1.11	0.86	1.05	0.94	0.96	1.43	1.01	0.95	1.46	1.02
25	La Clemence													
26	Labourdonnais	1.00	0.98	0.78	0.88	0.89	1.08	0.86	1.05	0.93	0.82	0.95	0.91	0.92
27	Mapou	1.26	1.04	0.99	1.06	1.04	1.15	1.11	1.11	1.19	1.13	1.18	1.13	1.12
28	Mon Loisir	1.30	1.49	1.06	1.11	1.10	1.17	0.77	1.12	1.20	1.15	1.23	1.23	1.14
29	MSA BH 1117	0.40	0.50	0.42	0.34	0.36	0.40	0.32	0.30	0.35	0.39	0.38	0.39	0.38
31	MSA BH 17	103	104	070	1.00	114	0.95	0.93	0.95	106	0.99	103	080	0.96
32	MSA BH 309		0.04								0.4			
33	MSA BH 309	0.37	0.46	0.38	0.38	0.33	0.45	0.74	0.27	0.30	0.42	0.30	0.30	0.38
34	P. Bon Espoir	1.41	1.45	1.16	1.18	1.21	1.31	1.31	1.37	1.45	1.36	1.48	1.56	1.34
35	P. D'Or (New)	1.08	0.94	0.84	1.07	0.94	0.82	1.04	1.00	1.16	0.83	0.94	1.20	0.99
36	P. D'Or No. 1	0.76	1.05	0.69	0.50	0.69	0.54	0.54	\#DIV/0!	0.16	0.47	0.66	0.72	0.66
37	P. D'Or No. 2	1.15	1.39	1.00	0.97	1.37	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIVI0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	1.62
38	P. D'Or No. 3	0.49	0.55	0.40	0.38	0.49	0.33	0.39	0.42	0.45	0.42	0.47	0.45	0.43
39	P. D'Or No. 4	0.41	0.54	0.33	0.32	0.33	0.38	0.36	0.40	0.45	0.45	0.47	0.45	0.40
40	Petite Retraite	0.91	0.91	0.73	1.00	0.82	0.94	0.81	0.84	0.79	1.15	1.02	0.96	0.91
41	Petite Retraite	0.86	1.08	0.75	250	114	074	1.00	0.72	071	0.80	0.73		089
43	Schoenfeld												0.90	0.89
44	Schoenfeld	1.82	1.82	1.56	1.99	1.60	1.99	1.68	1.74	1.88	1.78	1.73	1.80	1.78
45	Solitude	1.33	1.30	1.07	1.40	\#DIV/0!	\#DIV0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	0.81	2.49	1.83
DWS-EAST														
46	B.Rose Clemencia no 1	1.02	1.12	0.93	1.05	1.00	1.08	1.01	1.03	1.06	0.95	1.04	1.00	1.02
47	B.Rose Clemencia no2													
48	B.Rose Clemencia 03													
49	Bel Etang	0.95	0.61	0.95	0.46	0.94	1.31	0.83	0.48	0.98	1.09	0.70	1.30	0.83
50	Bonne Mere	0.59	0.67	0.75	0.43	0.43	0.78	0.76	0.46	0.63	0.56	0.63	0.21	0.57
51	Bonne Mere													
52	$\frac{\text { Camp Ithier }}{\text { Caroline }}$	0.73	0.77	0.66	0.73	1.28	1.29	1.16	1.65	1.54	1.22	1.51	1.39	1.36
53	Caroroine					0.76	0.73	0.74	0.75	0.76	0.78	0.81	0.80	0.75
55	Constance BH No1	0.65	0.87	0.90	1.07	0.87	0.94	0.88	0.901.46	1.00	0.96	1.24	1.27	0.96
56	Constance BH No2													
57	Laventure	1.33	1.53	1.41	2.58	1.73	2.52	1.53		1.47	1.39	1.32	1.24	1.57
58	Petit Paquet								1.46					
PUMPING STATIONS (\mathbf{N})														
60	Choisy Baie du Cap New	\#DIV/0!												
61	Bananes	0.40	0.61	0.68	0.15	\#DIV0!	0.32	0.17	0.64	\#DIVIO!	0.49	\#DIV/0!	0.03	0.33
62	Café	0.69	0.74	0.25	0.73	0.56	0.00	1.37	0.67	0.69	0.64	0.67	0.64	0.64
63	Cluny	0.62	0.66	0.55	0.67	0.48	0.58	0.58	0.52	0.55	0.58	0.54	0.52	0.57
64	Cluny													
65	Cluny													
66	Gebert	0.65	0.71	0.54	0.59	0.47	0.57	0.52	0.51	0.57	0.53	0.61	0.61	0.57
67	M.D.M.T- Plaisance	0.78	0.92	${ }^{0.71}$	0.75	0.73	0.74	0.73	0.75	0.78	0.74	0.77	0.79	0.76
69	N. France (new)	0.97	1.25	0.87	0.96	0.81	0.00	1.68	0.83	0.87	0.80	0.94	0.93	0.90
70	N. France(old)	\#DIVIO!	\#DIVIO!	\#DIV/0!	\#DIV/0!	\#DIV/0!	$\frac{\text { \#DIV/0! }}{0.00}$	\#DIV/0!	$\frac{\text { \#DIV/O! }}{0.45}$	\#DIV/0!	\#DIV10!	\#DIV/0!	\#DIVO!	$\frac{\text { \#DIV/0! }}{0.47}$
71	$\frac{\text { Trois Boutiques }}{\text { Trois Boutiques }}$	0.45	0.52											

s No	Site Name	2005												Total 05
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
VS-Port Louis														\#DIV/0!
s-MAV UP														
73	Alma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74	Beard	0.45	0.48	0.37	0.41	0.43	0.44	0.43	0.43	0.49	0.42	0.45	0.44	0.44
75	Beard (new)													
76 78	Bonne Veine BH no1	0.44	0.43	0.13	0.44	0.36	0.00	0.78	0.34	${ }^{0.33}$	0.34	0.33	0.31	0.35
78	Montee du Fil	0.46	0.44	0.25	0.38	0.37	0.37	0.39	0.34	${ }^{0.30}$	0.40	${ }^{0.43}$	${ }^{0.43}$	0.38
79	Montee du Fil													
S-MAV LOWER			1.82	1.57	1.86	1.85	2.00	2.34		2.07	1.95	2.13	2.18	
80	$\frac{\text { Bambou (Eau Bonne) }{ }^{\text {BH N No1 }} \text { (}{ }^{\text {Bambou (Eau Bonne) }} \text { BH No2 }}{}$	1.68							1.66					1.90
82	Barkly (BH)	0.98	1.07	0.85	0.96	0.84	0.89	1.19	0.67	0.96	0.85	0.93	1.11	0.93
83	Barkly (SP)													
84	Bassin BH No 1	0.31	0.74	0.64	0.75	0.66	0.62	0.68	0.62	0.63	0.68	0.75	0.91	0.66
86	Bassin 717	2.17	3.03	2.40	0.00	4.85	3.48	4.81	4.98	6.48	2.66	1.95	3.24	3.05
87	Bassin 435													
88		0.68	0.59	0.44	0.53	0.00	2.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	Clairfonds BH No. 2					1.51		2.10	0.59	0.62	0.60	0.84	0.80	0.78
91	Ebene BH No1	0.50	0.53	${ }^{0.60}$	${ }^{0.49}$	0.48	0.52	0.79	0.39	0.66	0.56	0.63	0.67	0.56
93	Highlands	0.77	1.06	0.85	0.64	0.49	0.50	0.74	0.66	0.66	0.57	0.56	0.69	0.65
94	Highlands													0.64
95	Holyrood	0.66	0.77	0.59	0.58	0.52	0.59	0.76	0.50	0.69	0.59	0.75	0.85	
96	$\frac{\text { Holyrood }}{\text { Holyrod }}$													
98	Holyrood													
99	Holyrood													
100	Holyrood													
101	Holyrood													
103	Palma	0.51	0.58	0.48	0.88	\#DIV0!	\#DIVO!	0.52	0.54	0.55	0.51	0.55	0.50	0.66
104	Palmyre 26B	0.62	0.83	0.46	0.37	0.54	0.54	0.72	0.46	0.64	0.62	0.68	0.00	0.53
105	Palmyre 419	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.06	0.01
106	Palmyre (new) 827	2.110.61	2.58	1.660.65	1.80	1.62	1.79	2.55	1.66	2.19	2.19	1.97	0.00	1.83
107	Pont Fer (petit camp) BH No1		0.66		0.59	0.56	0.56	${ }^{0.80}$	0.60	0.58	0.66	${ }^{0.64}$	${ }^{0.72}$	0.63
108 109	$\frac{\text { Pont Fer (petit camp) BH No2 }}{\text { Solferino }}$	0.74	0.76	0.57	0.89	0.67	0.71	0.85	0.58	1.36		0.73	0.74	0.74
110	Solferino Candos	0.18	0.22	0.20	0.18	0.14	0.14	0.19	0.13	0.19	0.17	0.18	0.19	0.17
111	Solferino Candos										0.11		0.19	
112	Solferino Dookun	0.67	0.85	1.20	1.57	1.09	0.73	0.92	0.54	0.82	0.58	1.11	1.01	0.85
114	St Jean													
115	St Jean	0.50	0.60	0.46	0.51	0.48	0.54	0.65	0.46	0.56	0.55	0.71	1.41	0.57
$\frac{116}{117}$	$\frac{\text { St Paul BH No1 }}{\text { StPa }}$	0.47	0.74	0.57	0.48	0.43	0.40	0.80	0.90	0.44	0.45	0.48	0.43	0.53
117	St Paul BH No2	0.4				0.43								
118	Telfair	0.93	0.96	${ }^{0.71}$	0.80	0.85	0.91	0.94	1.02	1.15	1.18	1.41	1.54	1.00
120	Trianon													
121	Trianon (New)	0.48	0.47	0.81	0.79	0.52	0.75	1.00	0.68	0.85	0.74	0.76	0.87	0.72
122 123	Valentina (Lower Phoenix)	0.69	0.70	0.47	0.53	0.52	0.70	0.72	0.56	0.67	0.62	0.73	0.75	0.63
123 124	$\frac{\text { Valentina (Lower Phoenix) }}{\text { Valentina (new) }}$	1.55	1.84	1.53	1.17	2.10	1.08	1.87	1.05	1.27	1.35	1.52	2.16	1.47
125	Yemen	0.92	0.95	2.97	9.19	0.78	84	1.34	0.63	0.92	84	0.80	0.98	1.01
126	Yemen(OLD)	2.06	2.16	1.90	1.85	1.84	1.68	2.46	1.46	1.96	1.44	1.45	1.47	1.77
	Yemen New	0.70	0.87	0.71	0.69	0.75	0.72	0.81	0.69	0.77	0.73	0.75	0.77	0.72

Monitoring of Operation of Barkly (Herchenroeder) BH 664 under operation with Variable Speed Drive

						Input to Pump			Input to Drive			Leakage level
No	Time	$\left(\mathrm{m}^{3 / h r}\right)$	Pressure (m)	Level (m)	Reading $\left(m^{3}\right)$	Current (A)	Voltage (V)	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{Hz}) \end{gathered}$	Current (A)	Voltage (V)	Frequency (Hz)	
1	08:00											
2	10:00											
3	12:00											
4	14:00											
5	16:00											
6	18:00											
7	20:00											
8	22:00											
9	00:00											
10	02:00											
11	04:00											
12	06:00											

Monitoring of Operation of Holyrood BH 35E under operation with
Variable Speed Drive
Period:

	Date	$\begin{aligned} & \text { Flow } \\ & \left(\mathrm{m}^{3 / h r}\right) \end{aligned}$		Dynamic Water Level (m)	Meter Reading (m^{3})	Input to Pump			Input to Drive		
			Pressure (m)			Current (A)	Voltage (V)	Frequency (Hz)	Current (A)	Voltage (V)	$\begin{gathered} \text { Frequency } \\ (\mathrm{Hz}) \\ \hline \end{gathered}$
1	1st day of Current Month										
2	15th day of current Month										
	End of Current month										

